Юрий Медовщиков - Токсичность автомобиля
- Название:Токсичность автомобиля
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785449633194
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Медовщиков - Токсичность автомобиля краткое содержание
Токсичность автомобиля - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поэтому в первых случаях с наиболее простыми факторными силами решение принимается как задача Коши и непосредственно в виде предложенной автором ранее формулировки, то для более общих случаев движения уже необходимо применять уравнение Лагранжа и соответствующие этому математические апраксимации.
1.2.Методы математического моделирования
для решения многосторонних задач.
1.2.1.Проблема использования матечатических
методов моделирования.
При решении сложных вопросов моделирования различных процессов всегда использует различной сложности математические методы моделирования. Это основ-ной способ нахождения достоверного решения, точность решения которого зависит от выбранной модели и т. п.
Моделирование движения автомобиля или транс-портного средства и особенно выбросов вредных веществ с отработавшими газами – очень сложная проблема, имеющая многочисленные аспекты и особенности. Поэтому известно достаточно много подходов в этой области, многие из которых имеют некоторые отличительные особенности, более или менее правильно соответствуют действительности. Различные исследователи и ученые трактуют данные проблемы исходя из своих конкретных представлений по разному, но полностью полагаясь на методы математического моделирования, анализ которых представляет определенный интерес. Таким образом, непосредственно вопросы математического моделирования в данном случае играют ключевую роль и принципиально важны даже в перспективе. Выбор наиболее правильной модели зависит от анализа уже существующих и т.п., поэтому данному вопросу необходимо уделить соответствующее внимание и особый интерес.
1.2.2.Методы расчета в теории движения
автомобиля.
Общий случай движения транспортного средства
описывает уравнение Лагранжа второго рода, в котором учитывается переменные в профиле и плане параметры дороги, т.е. временная кривизна, что позволяет определять характеристики с учетом управляемости, однако, что достаточно сложно в виду невозможности точного определения некоторых из них. За обобщенную координату принимается угол поворота коленчатого вала, а за обобщенную силу – момент на валу двигателя, первой производной является угловая скорость вала двигателя.
Учитывая чрезвычайную сложность точного решения для данного уравнения, а также то, что более простая формадля задач типа Коши без учета переменной кривизны в про филе и плане представляется для движения автомобиля в плане в традиционной классической форме.
Основоположником теории автомобиля в этом плане является академик Чудаков Е.А,который использовал работы Жуковского Н. Е. для анализа движения и позднее создал свою научную школу в виде последователей, но его представления не меняются уже протяжении более 70 лет.
1.2.3.Обзор аналитических методов определения токсичности вредных выбросов.Большой вклад в развитие представлений о токсичности двигателей внес д. т. н., профессор Варшавский И. Л. и его последователи. Им была создана основа теории токсичности двигателя и лишь частично-автомобиля, на базе которой проводятся все современные исследования и созданы многочисленные разнообразные методики расчетов..
В зависимости от коэффициента избытка воздуха, например, определяется выброс СО, а также определяется условие не токсичности воздуха в помещении. По другой методике на базе математической апраксимации можно определить выброс токсичного компонента. Необходимое и достаточное условие разбавления отработавших газов воздухом также определяется в его исследованиях, также как и токсичность газовой смеси.
Кроме этого удельную токсичность двигателя и токсичность автомобиля также можно определять в общем случае и для автомобилей с нейтрализаторами. Токсичность компонентов, приведенная к СО по критериям вредности – это также критерии в данном случае.
1.2.4.Инженерные математические методы
для расчетов.
Среди различных оптимизационных методов обычно выделяют метод исследования эксперимента. Однако это не самый лучший из подходов с точки зрения повышения точности результатов расчетов, особенно для задач движения транспортных средств. Кроме того, в расчетах обычно удобнее использовать численные методы на базе известных критериев оптимизации. В непосредственных расчетах эти-ми методами являются такие как метод хорд, метод Симпсона, отрезков, Рунге-Кутта и др. Они также дают приближенное решение задачи с определенной точностью. Как правило, это задачи, по своей сути, на собственные значения, позволяющие определять действительное значение искомого параметра приближенным численным методом.
В задачах оптимизации при многофакторном эксперименте. когда требуется найти экстремум по многим исходным параметрам, обычно используют действительно методы исследования операций. К ним можно отнести методы покоординатного спуска, градиентного спуска, метод Эйлера, Адамса, главного критерия, обобщенного критерия, последовательных уступок, экспертных оценок, наименьших квадратов или Лежандра-Гаусса и т. п.
Некоторые из них являются более общими и могут использоваться не только для многофакторного эксперимента, поэтому четкого различия иногда не проявляется, но проблема точности решения для данных задач остается сложной. К более серьезным и совершенным, но новым методам относится численное моделирование на базе метода конечных элементов. В классе задач теории движения транспортных средств известен лишь ограниченный круг работ. Однако, в целом данный метод известен как самый серьезный и точный инженерный математический метод, обладающий фундаментальными обобщениями для различного класса задач, поэтому он может позволить решить задачи оптимизации на высоком уроне.
Существует несколько вариантов метода конечных элементов с точки зрения его математической формулировки: вариационный МКЭ в виде метода Ритца, метод Галеркина, метод коллокаций, метод наименьших квадратов, метод штрафов. метод невязок. Точность решения с помощью метода конечных элементов, как известно очень высокая и зависит от возможности уменьшения невязки решения. что в отдельных случаях, особенно, для задач на собственные значения, удается достигнуть.
Метод конечных элементов значительно глубже и точнее, чем известные методы исследования операций, поэтому он очень прогрессивен и перспективен. Различные варианты МКЭ имеют свои особенности, которые необходимо учитывать, поэтому далее дается краткая характеристика основных из них.
Метод Ритца отличается заменой величины невязки в вариационной задаче конечно-элементным пространством или последовательностью конечно-элементных под-пространств и специально подобранными пробными функциями. На каждом подпространстве минимизация функционала приводит к решению системы линейных уравнений. Апроксимация Ритца—это функция, минимизирующая исходную искомую функцию на области определе- ния. Система линейных уравнений в данном случае решается методом исключений Гаусса. Принцип мини-макса характерен для случая решения задачи на собственные значения, при котором определяются приближенные значения функции.
Читать дальшеИнтервал:
Закладка: