Дэвид Джоунс - Изобретения Дедала

Тут можно читать онлайн Дэвид Джоунс - Изобретения Дедала - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_tech, издательство Мир, год 1985. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Изобретения Дедала
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1985
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Дэвид Джоунс - Изобретения Дедала краткое содержание

Изобретения Дедала - описание и краткое содержание, автор Дэвид Джоунс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Научно-популярная книга английского популяризатора науки и техники, выступавшего в течение многих лет на страницах журнала New Scientist под псевдонимом «Дедал». В живой и увлекательной форме автор рассказывает о смелых, поражающих воображение «идеях» современного Дедала – от твердой «газировки» и электрического садовника до молекулярного гироскопа и магнитного монополя.

Написанная с большим юмором, красочно иллюстрированная, книга адресована всем интересующимся достижениями науки и техники.

Изобретения Дедала - читать онлайн бесплатно полную версию (весь текст целиком)

Изобретения Дедала - читать книгу онлайн бесплатно, автор Дэвид Джоунс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При комнатной температуре на каждую степень свободы молекулы приходится энергия, равная 1/2kT. Приравнивая Е = BhJ (J+1) = 1/2kT и принимая T = 300 К, а В = 1,7 ГГц, получим J = 43; это означает, что молекулы находятся в основном на 43-м разрешенном энергетическом уровне; чтобы возбудить их на следующий, более высокий уровень, мы должны подействовать на них излучением с частотой v = 2ВJ = 2 × 1.7 × 43 = 150 ГГц, что соответствует длине волны излучения примерно 2 мм. Следует ожидать поэтому, что при комнатной температуре камфора должна иметь резкий пик поглощения на длине волны около 2 мм; если мы будем возбуждать молекулы на этой частоте право-поляризованным ИК-излучением, то молекулы станут поглощать «правополяризованные» кванты. При возвращении на нижележащий уровень, однако, молекулы будут испускать либо правополяризованные, либо левополяризованные кванты. Поэтому после достаточно длительного облучения образца правополяризованным излучением все молекулы начнут в конце концов вращаться в одну сторону. (Вероятно, можно было бы поступить и по-другому: взять образец при очень низкой температуре, когда вращение молекул практически отсутствует, и нагревать его до комнатной температуры правополяризованным ИК-излучением со ступенчато возрастающей частотой, — тогда все молекулы будут вращаться в одну сторону. Так, наверное, будет даже быстрее.)

Какое количество вращательной энергии может накопить кристалл камфоры? Очевидно, 1/2 RT Дж/моль. Тогда образец вещества массой 10 г будет обладать энергией Е = 1/2 × 8,314 × 300 × (10/152) = 82 Дж (кинетическая энергия вращения молекул). Если представить себе этот же образец в виде макроскопически вращающегося шарика, то такой шарик должен иметь радиус 1,33 см = 0,0133 м (если считать плотность равной 1 г/см 3), и обладать моментом инерции I = 0,4 mr 2= 0,4 × 0,01 × (0,0133) 2= 7,1 × 10 -7 кг•м 2. Чтобы кинетическая энергия его вращения составляла 82 Дж, шарик должен вращаться с угловой скоростью ω, которая определяется из равенства Е = 1/2Iω 2, откуда ω = [2×82/(7,1× -7)] 1/2= 15200 рад/с = 145000 об/мин! Таким образом, «молекулярный гироскоп» способен запасти гораздо большую энергию вращения, чем обычный маховик.

Легкое дыхание Чтобы избежать опасности азотного опьянения подводники при - фото 98

Легкое дыхание…

Чтобы избежать опасности азотного опьянения, подводники при погружении на большую глубину пользуются различными дыхательными смесями, которые позволяют спокойно работать в условиях, когда внешнее давление достигает десятков атмосфер. Дедал отмечает, что многие инертные газы имеют очень высокую плотность, причем с повышением давления плотность возрастает. По расчетам Дедала, при давлении в 50 атм плотность самого тяжелого из устойчивых инертных газов — ксенона равна плотности воды, так что человек вполне может в нем плавать. При этом давлении содержание кислорода, необходимое для дыхания, составляет всего 0,5 % — ощущения человека в такой среде одновременно напоминают погружение на глубину и свободное падение, но без риска утонуть или свернуть себе шею. Дедал предлагает соорудить огромные герметически закрытые куполы, снабдив их шлюзовыми и декомпрессионными камерами, и заполнить их сжатым ксеноном. Внутри такого купола человек сможет наконец-то удовлетворить свое врожденное стремление парить подобно птице [31]. Вода легче сжатого ксенона и поэтому станет всплывать наверх; таким образом, под сводом купола можно устроить озеро (заметьте, что брызги от брошенных в воду предметов полетят вниз!). Разница в плотности воды и сжатого ксенона настолько мала, что брызги и волны будут расходиться с восхитительной медлительностью. Как считает Дедал, его идея прежде всего открывает новую возможность «отдохнуть душой». Не исключено, что сеансы психоанализа, проведенные в этой полностью расслабляющей (в буквальном и переносном смысле) среде, помогут изможденным пациентам снять тяжесть с души и, быть может, даже откроют тайные истоки извечного стремления людей летать. Вспоминая о легендарных достижениях своего предтечи по части полетов, Дедал предполагает, что в основе общечеловеческого желания взлететь в воздух лежит наследственная память человечества о воспетом классиками подвиге.

Эта гипотеза также объясняет загадочное начало одного из малоизвестных вариантов поэмы Кольриджа:

Построил в Ксеноду Кубла
Чертог, ксенона полный храм… [32]

New Scientist, July 6, 1967

Из записной книжки Дедала

Похоже, что ксенон — единственный газ, плотность которого может превышать плотность воды: в критической точке (при температуре 16,6°C и давлении 58 атм) его плотность составляет 1154 кг/м 3. Допустим, что при 25°C и 50 атм ксенон находится в истинно газообразном состоянии, а его плотность равна плотности воды, т. е. 1000 кг/м 3. Можно ли дышать в такой среде? Чтобы концентрация кислорода (по массе) в ксеноне была равна содержанию кислорода в обычном воздухе, при 50 атм кислород должен составлять всего 0,5% объема смеси (Хе+O 2) — наличие столь незначительного количества кислорода вряд ли окажет сильное влияние на ее физические свойства. Вязкость ксенона при давлении в 1 атм и температуре 20°C лишь немного превышает вязкость воздуха (2,3×10 -5и 1,8×1- -5Н•с/м 2соответственно); как известно, вязкость газа мало зависит от давления. Поэтому ксеноновой смесью будет дышать не труднее, чем обычной дыхательной смесью для глубоководного погружения, обладающей примерно той же вязкостью, что и воздух. В любом случае, если даже дыхание в подобных смесях затруднено, мы всегда имеем возможность слегка повысить концентрацию кислорода.

Любопытно также, что наш голос будет звучать в такой смеси очень «грубо» — в противоположность «голосу Буратино», который получается с помощью гелий-кислородной смеси. Дело в том, что скорость звука в гелии намного выше, чем в воздухе (970 и 331 м/с при 0°C соответственно), а скорость звука в ксеноне намного меньше (169 м/с), чем в воздухе. Таким образом, голос в ксеноне станет ниже на целую октаву.

Комментарий Дедала На поверку оказалось что высказанные здесь предположения - фото 99
Комментарий Дедала

На поверку оказалось, что высказанные здесь предположения довольно нестандартны. Профессор Дж. Килстра дает захватывающее описание ( Scientific American, Aug. 1968, p. 66) опытов, в которых животные — а в одном случае и человек-доброволец — дышали насыщенными кислородом жидкостями (например, соленой водой). Основная проблема при этом возникает из-за высокой вязкости жидкостей (вязкость воды, к примеру, составляет 10 -3Н•с/м 2, что в 60 раз превышает вязкость воздуха) и соответственно низкой скорости диффузии растворенных газов, отчего эффективность дыхательного газообмена снижается и затрудняется вдох-выдох. В то же время при использовании для дыхания жидкостей отпадает необходимость в значительном повышении давления: для насыщения соленой воды кислородом в количестве, достаточном для дыхания, необходимо давление всего в 5 атм, а некоторые фторуглеродные соединения содержат достаточное количество кислорода уже при атмосферном давлении.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Дэвид Джоунс читать все книги автора по порядку

Дэвид Джоунс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изобретения Дедала отзывы


Отзывы читателей о книге Изобретения Дедала, автор: Дэвид Джоунс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x