Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Выходит, Циолковский был прав: классическими законами вполне можно объяснить спектры атомов, если использовать кристаллическую магнитную модель атома Ритца. Более того, спектры буквально кричат именно о такой чёткой модели. Идеально похожие для атомов одного элемента наборы спектральных линий с частотами, заданными точными соотношениями с целочисленными переменными, — разве это не удивительно? Столь чёткая структура линий может возникать лишь в кристаллоподобном атоме, где электроны, генерирующие спектр, занимают лишь некоторые устойчивые положения, отделённые одно от другого шагом дискретизации, равным периоду кристаллической электрон-позитронной решётки. Именно Вальтер Ритц, первым нашедший общую формулу для атомных спектров, показал, что атомный механизм генерации спектра обусловлен периодичным расположением частиц. Итак, дискретные атомные спектры подтверждают дискретную кристаллическую структуру атома.
§ 3.3 Строение атомов и периодический закон Менделеева
Свойства простых тел, а также формы и свойства соединений элементов, находятся в периодической зависимости (или, выражаясь алгебраически, образуют периодическую функцию) от их атомных весов.
Д.И. МенделеевСчитается, что химические свойства атомов, характер движения и размещения в них электронов никак не связаны со строением атомных ядер. А, между тем, многое говорит о наличии такой связи. Её всячески замалчивают, поскольку она противоречит квантовой физике, и лишь классическая магнитокристаллическая модель атома Ритца открывает эту связь.
В планетарной квантовой модели атома полагали, что на строение электронных оболочек атома влияет лишь заряд ядра, но не его структура. А какую же роль играет электричество, заряд ядра в магнитной модели атома? Если поле осей крестовины задаёт расположение электронов, то поле ядра — их число в атоме. В самом деле, положительный заряд ядра должен уравновешиваться отрицательным зарядом электронов, иначе заряженный атом будет отталкивать или притягивать электроны, пока не станет нейтральным. Но, хотя заряд ядра и определяет равновесное число электронов в атоме, — вовсе не он отвечает за их удержание там. Именно поэтому, существуют отрицательные ионы, — атомы с избытком электронов, невозможным по теории Бора. Ведь, если электроны удерживает электрическая сила, то как же сможет нейтральный атом удержать лишний электрон, а, тем более, — два или три? Даже поляризованному атому это не под силу. Но для магнитной модели анионы — не проблема. Нейтральный атом легко может удержать лишний электрон в одном из узлов сетки (§ 4.14). Для захвата многих электронов есть и другой механизм: магнитное поле крестовины, атомного остова. На избыточный внешний электрон, влетающий в атом, действует сила Лоренца, способная удержать его на орбите, даже при отталкивании внутренними электронами (Рис. 100).
Рассмотрим теперь, как расположены внутренние электроны в атоме. По структурной модели атома, строение и заполнение электронных слоёв определяется строением ядра (остова атома), — не просто его зарядом, как в квантовой физике, а, именно, — пространственной структурой остова и конфигурацией полей. Она же задаёт периодичность свойств элементов. Напомним, что числа элементов в периодах таблицы Менделеева образуют следующий ряд: 2, 8, 8, 18, 18, 32, 32. Это удвоенные квадраты целых чисел k вида 2 k 2: 2=2·1 2, 8=2·2 2, 18=2·3 2, 32=2·4 2. Ещё задолго до теории атома Бора, многие учёные, — Дж. Томсон, Дж. Льюис, И. Ленгмюр, — поняли, что периоды связаны с последовательным заполнением электронами неких слоёв, уровней, оболочек в атоме [49]: в первом слое 2 места, во втором — 8 и т. д. Когда электроны полностью займут один слой, уровень, начинает заполняться следующий, открывая новый период, словно яичные ячейки, укладываемые по мере заполнения яйцами одна над другой, или пушечные ядра, складываемые пирамидой. У инертных газов, расположенных в конце периодов, слои целиком заполнены и потому крепко связывают электроны. Отсюда — химическая инертность этих, предельно совершенных, благородных газов.
Но, по квантовой механике, ёмкости оболочек для периодов с 1-го по 7-й иные: 2, 8, 18, 32, 50, 72, 98, что не соответствует числу элементов в периодах. Поэтому, даже к концу периода оболочки остаются не заполнены, утрачивая свой смысл, ибо заполняются непоследовательно. Да и сама идея оболочек и способа их заполнения, заимствованная из классической модели атома Дж. Томсона, выглядит в квантовой механике весьма натянуто, хотя бы потому, что произвольно вводятся четыре квантовых числа, задаваемых искусственно введёнными правилами, ниоткуда не следующими и ничем не обоснованными. Поэтому, для уяснения природы электронных оболочек — обратимся к забытым идеям Джильберта Льюиса. Подобно Ритцу, он считал причиной атомных спектров способность электрона занимать в атоме различные равновесные положения, которым соответствуют свои частоты колебаний. А оболочки и число электронов в них Льюис связывал с наличием у атома определённой пространственной структуры, — некоего правильного геометрического объёма, послойно заполняемого электронами, занимающими, при переходе к новым периодам, новые уровни [49]. Функция ядра в том и состоит, чтобы задавать эту пространственную структуру, кристаллизуя вокруг себя электроны. Осталось найти тело, дающее нужную конфигурацию слоёв и числа электронов в них.
Легко видеть, что этим телом должна быть бипирамида — две четырёхгранных пирамиды, вроде пирамид Хеопса, соединённых вершинами (Рис. 104). Эти пирамиды послойно от вершины заполняются электронами, как блоками реальных пирамид, или как упомянутые пирамиды из пушечных ядер. Уже то, что числа электронов в слоях — это удвоенные квадраты чисел 1, 2, 3, 4, должно говорить о том, что слои имеют форму постепенно растущих квадратов, — последовательных сечений пирамиды. Ну а то, что электронные слои, числа элементов в периодах — дублируются, означает, что пирамид этих — две. Они имеют общую вершину — слой с числом мест равным 2, потому-то он один и не дублируется. Интересно, что к подобной бипирамидальной форме ядра пришёл и В. Мантуров, но уже из соображений ядерной физики [79]. Более того, ещё в Древней Греции Платон предложил считать элементарные частицы, атомы, — имеющими вид многогранников, пирамидок (§ 5.3) [63]. Так же, и первый атомист, древний грек Демокрит, — предлагал считать атомы геометрическими телами, "формами", заполняемыми по семи уровням элементарными частицами, — амерами (электронами). Ломоносов, как основатель русской физики с химией и последователь древних атомистов, тоже представлял атомы каждого элемента в виде частиц стандартных масс, геометрических размеров и форм, считая атомы многогранниками, пирамидами с квадратным основанием (см. его диссертацию "О различии смешанных тел, состоящем в сцеплении корпускул"). Наконец, и сам Менделеев связывал открытую им периодическую зависимость свойств элементов от веса атомов — с их формой, пространственной структурой атома.
Читать дальшеИнтервал:
Закладка: