Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Аналогия химии и ядерной физики позволяет понять и природу изомерии атомных ядер. Ядро из данного числа протонов и нейтронов можно построить многими способами, по-разному располагая частицы в слоях. Тогда, даже ядра с одинаковым протон-нейтронным составом, но разным строением, будут иметь разные стабильности. Это и есть ядра-изомеры, аналогичные молекулам-изомерам органической химии, имеющим одинаковый атомный состав, но разный порядок размещения атомов, а, значит, — разные свойства. Возможно, ядра способны распадаться разными путями и иметь несколько разных периодов полураспада [169], как раз ввиду того, что это смесь изомеров (процент данного типа распада определяется содержанием соответствующего изомера).
Итак, свойства ядер заданы не только числом образующих их протонов и нейтронов, но и размещением их в остове. Аналогично в структурной химии давно открыто, что свойства молекул зависят как от числа атомов-составляющих, так и от их пространственного расположения в молекуле, — от её структуры, как это впервые показал А.М. Бутлеров (§ 5.16). Такие молекулы с идентичным атомным составом, но разным строением и свойствами, называют "изомерами". То же верно и для ядер. Явление ядерной изомерии давно открыто О. Ганном и более подробно исследовано, например, И. Курчатовым. Есть много ядер-изомеров с одинаковым протон-нейтронным составом, но разными периодами полураспада. Здесь проявляется организующая роль остова, где нуклоны образуют разные конфигурации. В квантовой модели ядра этому нет объяснения, как нет объяснения и магическим числам нуклонов, оболочечной модели. Ведь в ядре, в отличие от атома, нет силового центра, который задавал бы по квантовой механике систему уровней [135]. А в кристаллической модели ядра такая задающая уровни структура есть, — это атомный остов.
Существование и число изомеров данного ядра зависит от его массы. Есть так называемые "островки изомерии", области масс атомов с большим числом изомеров. Связано это с заполнением ядерных уровней: в зависимости от того, насколько занят данный уровень, может быть больше или меньше сравнительно устойчивых вариантов его пространственного заполнения нуклонами, соответственно, — больше или меньше изомеров разной стабильности. Это объясняет, почему островки изомерии расположены возле стабильных магических ядер с их завершёнными уровнями. Это же объясняет, почему изомеры обычно встречаются у ядер с нечётным числом протонов и нейтронов [135]. Чётное число нуклонов разбивается на пары: частицы оказываются попарно связаны в слоях, так же, как электроны. Это происходит потому, что число мест в слоях, в том числе и вдоль периметра, — чётное, и тем или иным способом спаренные нуклоны могут образовать устойчивую, завершённую или этапно-завершённую конфигурацию слоя. Зато, при наличии неспаренного нуклона частицы могут свободно перемещаться в слое, как фишки в пятнашках, образуя разные конфигурации-изомеры. Связь изомерии с пространственным размещением нуклонов в ядре прослеживается хотя бы у 180Hf, у которого была отчётливо выявлена различная форма ядер изомеров. И, всё же, несмотря на то, что даже само слово "изомер" говорит о том, что явление связано с различным пространственным размещением нуклонов в ядре, физики, опираясь на разработанную Вейцзеккером квантовую теорию изомерии, считают, что изомеры — это лишь возбуждённые метастабильные состояния жидких бесструктурных ядер.
В целом, атом строится так: возводится бипирамидальный каркас, остов атома, и его раструбы послойно заполняются сначала протонами и нейтронами, затем электронами (Рис. 112, Рис. 113). И снова минимум энергии достигается при целиком заполненном слое, равно, как в кристалле, целиком заполненная атомами грань обеспечивает кристаллу минимум энергии и устойчивость, отчего их и находят в природе. Так, и среди ядер более стабильны ядра с полностью укомплектованными слоями протонов и нейтронов, — магические ядра. Они самые прочные, инертные и плохо взаимодействующие с пучками нейтронов. А среди атомов всего прочнее и химически устойчивей атомы инертных газов, с их полностью укомплектованными слоями электронов. Как видим, аналогия с кристаллами полная. Странно, что учёные, осознав высокую устойчивость целиком заполненных электронных слоёв, не провели параллель с устойчивостью заполненных атомных слоёв кристалла. Впрочем, учёные-классики — Дж. Томсон, Дж. Льюис, И. Ленгмюр, которые впервые и выдвинули идею электронных оболочек-слоёв, связали их стабильность именно с совершенной, целиком заполненной геометрической формой куба [49]. Лишь поздней эту мысль отвергли и перешли к абстрактным квантовым уровням, не имеющим геометрической интерпретации: в квантовой механике уровни и квантовые числа вводятся совершенно искусственно и формально.
Итак, именно модель атома Ритца пролагает мостик от атомных, химических свойств к ядерным, к свойствам элементарных частиц. Это ещё раз доказывает, сколь эффективны наглядные геометрические представления об атоме и атомном ядре. Ещё древние греки, открывшие фигурные числа, считали геометрию основой мира. Великий инженер Архимед особо ценил свои геометрические открытия, хотя был автором физических законов и удивительных машин. Подчёркивал особую роль геометрии и Пифагор, наделявший атомы конкретной формой многогранников. Так же, и Платон, удивительным образом предугадавший геометрическую форму атомных пирамидок, выше всего ставил геометрию, сделав соответствующую надпись над входом в свою Академию (§ 5.3). Нынешняя физика микромира много потеряла, отвергнув наглядные представления и чертежи, образный, геометрический, инженерный стиль мышления, подменив его абстрактно-аналитическим: формулами квантовой механики и теории относительности, лишёнными физического смысла и образа. В ходе формализации не только была утрачена наглядная адекватная картина мира, но и усложнились расчёты. Аналитическое решение многих задач микромира столь трудоёмко и громоздко, что даже ЭВМ не может с ними справиться. Пытаться понять с помощью формального, негеометрического описания устройство атома и микромира столь же безнадёжно, как силиться понять работу часов, не разобравшись в их сути, механизме, подменив их набором формул, отражающих движение стрелок. Вот почему, в физику атома, ядра и элементарных частиц давно пора вернуть геометрию. Как увидим ниже, геометрия оказывается крайне удобной и для понимания строения элементарных частиц (§ 3.9).
§ 3.7 Ядерные спектры и эффект Мёссбауэра
При максимально возможной опоре на механику или электродинамику необходимо указать физически наглядные математические операции, интерпретация которых через колебания подходящей модели приводит для неё к законам сериальных спектров; она должна позволить улучшить эмпирические формулы, упорядочить их с единой точки зрения и открыть новые законы.
Интервал:
Закладка: