Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 147. Хотя свет дифрагирует на щелях как волна, изображение на фотопластинке состоит из зёрен, как от падения отдельных фотонов.
Но, на деле, — всё просто: надо лишь отказаться от гипотезы фотонов и принять идею Ритца, по которой свет равномерно расходится во все стороны, в виде сплошного потока частиц с периодичным, волновым их распределением в пространстве. Такой поток, даже будучи ослаблен, содержит мириады частиц и сохраняет волновые свойства, ведущие к дифракции и интерференции (§ 1.12). Поэтому, на экране всегда образуется интерференционная картина. Однако, малая интенсивность света ведёт к тому, что атомы и молекулы в регистрирующем приборе не получают энергии, достаточной для акта регистрации. И лишь в редкие моменты, в редких точках, за счёт случайных вариаций, флуктуаций потока реонов (в том числе за счёт дифракции на тепловых неоднородностях воздуха), — энергия переносимой ими волны оказывается выше пороговой. Тогда и возникают редкие импульсы в фотодетекторах, а на фотопластинке — редкие тёмные точки. Аналогично, если на земле выстроить несколько одинаковых карточных домиков, то очень слабый порыв ветра сможет повалить лишь некоторые из них, лавинно распадающиеся, начиная с единственной карты. Но это не значит, что поток ветра квантуется, а означает лишь его случайные флуктуации, завихрения на препятствиях. А дискретность связана с дискретными актами регистрации ветра: карточный домик не может развалиться наполовину: он либо стоит, либо разваливается целиком. Точно так же и слабый поток света, приводящий к лавинному распаду (начиная с одной молекулы) отдельных фотографических зёрен — не квантуется, а испытывает случайные вариации от дифракции на препятствиях, и потому затрагивает лишь отдельные зёрна: процесс регистрации оказывается вероятностным, случайным.
Особенно ярко это проявляется при регистрации гамма-излучения, источником которого служат редкие ядра атомов и микрочастицы, отчего энергия отдельных актов излучения — мала. В итоге, лишь изредка счётчик Гейгера регистрирует излучение, что интерпретируют как попадание в детектор отдельных гамма-квантов. На деле же, источник всегда испускает гамма-излучение сразу во всех направлениях, в виде сферической волны, а не гамма-квантов, как подтвердил эффект Мёссбауэра (§ 3.7). И срабатывание лишь одного-двух из множества счётчиков обусловлено малой мощностью излучения и его флуктуациями. Это видно при аннигиляции электрона и позитрона, рождающей, по квантовой теории, два гамма-кванта (§ 1.16, § 3.13). А, на деле, не всегда одновременно регистрируют излучение лишь два детектора: изредка срабатывают разом и три детектора, ещё реже — четыре, чего квантовая теория объяснить не может. Причина же — в образовании сферической волны гамма-излучения (Рис. 42), слабо действующей на детекторы, отчего шанс срабатывания сразу многих счётчиков, у которых порог чувствительности будет случайно превышен, хоть и мал, но не равен нулю.
Как видим, прерывистость регистрации света связана с его малыми флуктуациями, случайными колебаниями яркости, которые у слабого сигнала сопоставимы с самим сигналом и порогом чувствительности. Чем же вызваны эти флуктуации света? Дело тут не в колебании яркости источника, а в промежуточной среде, воздухе, малые тепловые флуктуации плотности которого ведут к рассеянию и дифракции света, за счёт чего яркость в каждой точке экрана постоянно и случайно меняется, что вызвано ещё и дрожанием лазера с экраном. Эти малые флуктуации, действительно, были обнаружены, скажем, в опыте Брауна-Твисса, но, по ошибке, были истолкованы как флуктуации числа фотонов в пучке света [82]. Особенно хорошо заметны эти случайные колебания яркости в монохроматичном луче лазера: лазерное пятно на экране разбивается на сотни мерцающих точек: излучение кажется зернистым. Но, как было показано, это вызвано не зернистостью и дискретностью света, а его малыми флуктуациями. Аналогично, тепловые флуктуации, турбулентность в атмосфере Земли приводят к мерцанию света звёзд, быстрым колебаниям их цвета и яркости (§ 2.11). Отметим, что сторонники фотонных теорий хотели и это явление истолковать, как подтверждение дискретной структуры света: будто свет звёзд столь слаб, и фотоны следуют так редко, что мы видим отдельные кванты разных цветов лишь в моменты их точного попадания в фоторецепторы — оттого и мерцание (здесь кванторелятивисты снова пошли по пути Аристотеля, объяснявшего мерцание звёзд слабостью их световых лучей, которые от малой яркости якобы дрожат и часто летят мимо глаза). Но, к счастью, связь мерцания звёзд с волнением атмосферы доказана столь надёжно, что у фотонного объяснения нет шансов.
Первый "квантовый заскок" в представлении о свете, как о фотонах, произошёл с выходом в 1905 г. работы Эйнштейна о фотоэффекте и световых квантах. Ф. Ленард, исследуя фотоэффект, открыл, что в этом процессе "вырывания" светом электронов с поверхности металла, скорость V вылета электронов зависит не от интенсивности, а от частоты f выбившего их света. Отсюда Эйнштейн заключил, что световая энергия не только при взаимодействии с атомами, но и во всех прочих процессах излучается и поглощается только порциями, квантами. Так, электрон массой m , поглощая свет, приобретает энергию mV 2/2= hf одного кванта. То есть, Эйнштейн, в противоположность Планку, счёл кванты реальными частицами, фотонами, в виде которых распространяется свет, хотя, по Планку, выпуск и поглощение света (или пива) порциями ещё не доказывает, что свет состоит из квантов (а пиво — из неделимых порций).
Следующим пришёл Бор, который процесс излучения и поглощения света атомом вообще не связывал с колебаниями в нём электрона, а, значит, — и с электромагнитными волнами. Бор просто принял, что электрон скачком меняет свою энергию, отдавая или поглощая её разницу в виде кванта света. Всё это, вкупе с отказом от эфира, постепенно привело к мысли, что свет — это не просто электромагнитная волна, но частица, фотон, в форме которого свет не только излучается и поглощается, но и распространяется. В то же время, никто не думал отрицать, что свет — это волна. Так, в науку вошло осмеянное Дж. Оруэллом в романе "1984" двоемыслие, скрытое в физике под серьёзным научным термином "корпускулярно-волновой дуализм". Следуя ему, всякую волну надо одновременно считать частицей и, — наоборот, делая вид, словно, на самом деле, тут нет противоречия.
Неспособность истолковать корпускулярно-волновой дуализм света, одновременно способного интерферировать и вызывать квантовые эффекты, всегда смущала учёных. Понимая абсурдность, двусмысленность этого положения, они отмечали, что им приходится по понедельникам, средам и пятницам считать свет волной, а по вторникам, четвергам и субботам — частицей. Этот вопрос настолько неудобен, что некоторые учёные, скажем Фейнман, просто орали в ответ: "Не думай, а вбей себе в башку, что это так!". Так же и Ландау, когда ученики задавали ему подобные вопросы, называл их дураками и огрызался фразой: "Заткнись, дурак, не возникай и делай, как говорят!". Это отчаяние и бессилие учёных при объяснении противоречивых свойств света лучше всего свидетельствует об ошибочности квантовой физики и электродинамики Максвелла. Вместо того, чтобы способствовать пониманию, размышлению, нас призывают в "лучших" традициях религии веровать, ибо это абсурдно. В итоге, у всех, кто исповедует неклассическую модель мира, развивается комплекс неполноценности: они видят, что просто не могут понять природу света, осознают своё слабоумие и, потому, крайне раздражаются, когда им задают такие неудобные вопросы, которые они пожелали бы вообще забыть [111]. Впрочем, сам Эйнштейн уже к концу жизни в 1951 г. честно признался, что не может объяснить, что такое свет и световые кванты (фотоны).
Читать дальшеИнтервал:
Закладка: