Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Порой утверждают, что весь этот релятивизм и индетерминизм — это лишь продолжение программы Демокрита, Коперника, Галилея и Ньютона. Именно Демокрит, а затем и Коперник с Галилеем ввели в механику кинематический принцип относительности, показав относительность понятия скорости. То есть, если предмет движется в одной системе с заданной скоростью, то в другой системе, движущейся относительно первой, скорость предмета будет иной. Иллюзорность абсолютного движения окружающих предметов для наблюдателя на корабле отмечали ещё Демокрит и Лукреций (см. эпиграф § 2.19). Так же и Коперник показал, что видимое движение Солнца по небу не обязательно свидетельствует о его движении, и, в действительности, движется, вращается Земля. В этом суть кинематического принципа относительности и баллистического принципа в БТР. Но это никоим образом не лишает мир объективной реальности, а, как раз, — утверждает её. Нет ничего странного в том, что с разных точек зрения, разными наблюдателями всё видится по-разному: если первому одни предметы кажутся ближе, быстрее, то второму — другие.
При этом Демокрит, Коперник и Галилей в один голос утверждают, что все такие, воспринимаемые наблюдателем, движения звёзд и планет по небесной сфере — это лишь видимость, иллюзия, созданная вращением Земли. Существует чёткий вариант взаимного положения и движения тел, — существует объективная реальность, по-разному воспринимаемая разными людьми. А неклассические теории относительности и квантовой механики, напротив, вернули к воззрениям Птолемея-Аристотеля, приписав видимости — статус реальности, абсолютизировав наблюдателя. Не зря, выходит, А.К. Тимирязев обвинял Эйнштейна, который обесценил своей теорией — творение Коперника, жертву Бруно, подвиг Галилея. Что же касается скорости, то относительность этого понятия следует, в отличие от относительности массы, длины и времени, уже из определения: скорость вводится как отношение смещения в пространстве ко времени этого смещения. Естественно, что по-разному движущимся наблюдателям, относительно которых это смещение разное, и скорость тел представляется различной. Важно, что существует одна единственная скорость движения тела относительно выбранной определённым образом системы отсчёта. Во всём мироздании соблюдается чёткий единый план, общий строй, строгий порядок, закономерность и последовательность явлений, то что называют "детерминизмом".
Итак, неклассические теории навязывают нам нематериалистические, иррациональные, мистические взгляды, индетерминизм и релятивизм, отвергая объективную реальность. Весь мир неклассической физики XX века — это комната смеха, королевство кривых зеркал. И нас призывают считать реальными не истинные виды предмета, а его кривые, изогнутые изображения, видимые разными наблюдателями в разных зеркалах. В таких зеркалах медленно идущие процессы кажутся быстротекущими и наоборот; большое кажется малым и обратно; кривое выглядит прямым, а прямое — скошенным; короткая палка, частица, — представляется вытянутой и волнистой, а волна выглядит прямой, как стрела, или точечной. А, хуже всего, что именно эти ложные искривлённые изображения и мнения наблюдателей нас и призывают считать за образец красоты и истинности, как в повести В. Губарева "Королевство кривых зеркал". Разумеется, такой подход к явлениям мира нельзя считать научным.
В мире, на самом деле, властвует детерминизм: все тела и частицы имеют в каждый момент времени строго определённые координаты и физические свойства.Благодаря этому, как верно заметил "смеющийся философ" Демокрит, а также герой комедийно-философского фильма "Трасса 60": " любое случайное событие является в действительности закономерным и предопределённым, иначе бы оно не произошло". Далее покажем, как на основании этого строго детерминистического, научного подхода и чётко заданного в рамках БТР положения частиц в атомах и кристаллах объясняются различные феномены и свойства физических субстанций и твёрдых тел.
§ 4.14 Строение вещества и химическая связь
Что, наконец, представляется нам затверделым и плотным,
То состоять из начал крючковатых должно несомненно,
Сцепленных между собой наподобие веток сплетённых.
В этом разряде вещей, занимая в нём первое место,
Будут алмазы стоять, что ударов совсем не боятся…
Вещи, в которых их ткань совпадает взаимно с другою,
Так что, где выпуклость есть, у другой оказалась бы там же
Впадина, — эта их связь окажется самою тесной.
Есть и такие ещё, что крючками и петлями будто
Держатся крепко и так друг с другом сцепляются вместе.
Не только физика атома, ядра, но и физика твёрдого тела, термодинамика и химия опираются теперь на квантовую механику. Неужели даже в этих, исконно классических науках нельзя объяснить явления наглядно, а нужен сложный аппарат квантовой механики? В физике ядра, атома и элементарных частиц, как оказалось, квантовые представления не только не обязательны, но, часто, — просто ошибочны и уступают классическому описанию. Да и в других разделах физики классический подход даёт естественное адекватное описание всех "квантовых" эффектов, стоит лишь правильно их истолковать, найти удачную механическую модель явлений, строения атомов и частиц. Такой моделью оказалась бипирамидальная магнитная модель атома. Её основы заложены Ритцем, Томсоном, Ленардом, Ленгмюром и Льюисом — ещё в начале XX в. [19, 46]. Согласно модели, атом имеет форму двух пирамид, соединённых вершинами и послойно заполняемых электронами, что объясняет спектры атомов, закон Менделеева и законы фотоэффекта (§ 3.3, § 4.3).
Размеры атомов и межэлектронные зазоры в слоях задают и межатомные расстояния в молекулах и кристаллах. Ближе атомы сойтись не могут. Однако, почему они не могут разойтись? Что удерживает атомы вместе в молекулах и кристаллах? Первое научное объяснение этому предложили те же Ленгмюр и Льюис, на основе разработанной ими кубической модели атома, по которой ядро атома послойно окружают электроны, занимающие устойчивые положения в вершинах кубов [19, 46]. Эта модель во многом соответствует бипирамидальной, поскольку бипирамида вписывается в куб (Рис. 170). Модель Ленгмюра без всяких оснований отвергли, приняв квантовую теорию химической связи с абстрактными электронными облаками, орбиталями и их перекрытием. Зато в классической модели всё выглядело предельно просто. Электроны послойно заполняли пространственные уровни, оболочки атомов — в форме куба. Если в атоме уровень был заполнен не до конца, его могли занять электроны других атомов, входящие в вакантное место, как ключ в замок. Это позволяло образовывать химические соединения — только определённым подходящим друг к другу по форме атомам и в строго заданном отношении. Например, атом кислорода имеет два свободных места на электронном уровне (Рис. 170). Поэтому, к нему могут пристыковаться два атома водорода, содержащие по одному электрону. Так образуется молекула воды (Рис. 171). Тогда угол между отрезками, соединяющими центры атомов, составит около 109° (угол меж диагоналями куба). Это соответствует реальному углу в 105–109°, измеренному у молекул воды в экспериментах [138].
Читать дальшеИнтервал:
Закладка: