Сергей Семиков - Баллистическая теория Ритца и картина мироздания
- Название:Баллистическая теория Ритца и картина мироздания
- Автор:
- Жанр:
- Издательство:ООО Стимул-СТ
- Год:2010
- Город:Нижний Новгород
- ISBN:5-88022-175-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Семиков - Баллистическая теория Ритца и картина мироздания краткое содержание
Век назад, 7 июля 1909 г., оборвалась нить жизни талантливого молодого учёного Вальтера Ритца, успевшего за 31 год своей жизни сделать очень многое в науке. До сего дня в спектроскопии пользуются комбинационным принципом Ритца, а в физике, математике и технике — вариационным методом Ритца. Однако его другие ещё более важные научные разработки преданы забвению ввиду их расхождения с догматами теории относительности и квантовой физики. Это — разработанные Вальтером Ритцем в 1908 г, за год до смерти баллистическая теория и магнитная модель атома. Скоропостижная трагическая гибель учёного помешала ему довести до конца и доказать эти фундаментальные концепции света и атомов, электромагнетизма и гравитации. В результате имя и теории Ритца вскоре были забыты хотя именно баллистическая теория легко красиво и наглядно объясняет многие загадки природы. Дабы восстановить историческую справедливость и напомнить о незаслуженно забытом научном и жизненном подвиге Вальтера Ритца была написана эта книга, где автор популярно изложил и развил с учётом уровня современной науки Баллистическую Теорию Ритца.
Баллистическая теория Ритца и картина мироздания - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Наконец, скажем несколько заключительных слов по истории вопроса. П. Друде создал свою электронную теорию проводимости металла, представив ток — потоком электронного газа, в 1900 г. Эта теория, во-первых, объяснила все особенности проводимости и поведения сопротивления металлов, при изменении условий, во-вторых, предложила простое истолкование закона Видемана-Франца, — пропорциональности проводимости и теплопроводности металла, относящихся всегда в одной и той же пропорции, независимо от рода металла. Ведь теплопроводность металла, так же как и его электропроводность определяется потоком электронного газа, который переносит заряд (проводимость) и тепло, кинетическую энергию электронов (теплопроводность). Кажется странным, что учёные так легко отказались от столь простой и изящной теории. Но всё прояснится, если вспомнить, что П. Друде трагически погиб в 1906 г. в результате самоубийства, не дожив до 43-х лет. Это и позволило учёным отказаться от его классической теории — в пользу квантовой.
Период 1906–1909 гг., вообще, как говорилось, очень насыщен многочисленными и странными смертями ключевых учёных-классиков — тут и смерть от несчастного случая Кюри (1906 г.), и самоубийства Больцмана и Друде (1906 г.), и уход из жизни защитников кинетической теории, У. Кельвина и Д. Менделеева (1907 г.), гибель в больнице В. Ритца (1909 г.). Здесь в полной мере оправдалось высказывание М. Планка о том, что новые теории признаются не путём переубеждения учёных, а лишь в процессе умирания всех несогласных, по принципу "нет человека — нет проблемы". Кончина Друде служит ярким тому подтверждением. Его самоубийство не только позволило отвергнуть предложенную им классическую теорию металлов, но и привело к установлению господства вообще всей неклассической физики. Дело в том, что П. Друде был редактором одного из ведущих научных журналов того времени, — "Анналы физики", и стоял на страже классических взглядов. Однако, после его смерти в 1906 г. журнал возглавил М. Планк и В. Вин. Они сыграли крайне негативную роль, поскольку без ограничений допускали публикации по теории относительности и квантовой теории, всячески препятствуя публикациям их критики и альтернатив [161]. Кстати, на Вине же лежит и вина за допуск к публикации первых статей Эйнштейна в 1905 г. Вот так: внезапно и странно произошёл переворот, приведший к замене классической физики — на квантовую. История эта ещё ждёт тщательного расследования.
§ 4.18 Фазовые переходы 1-го и 2-го рода
Я полагаю, что следует ввести в физику понятия симметрии, столь привычные для кристаллографов.
П. Кюри, "О симметрии физических явлений", 1894 г.Эти исследования, если бы они были продолжены П. Кюри, могли бы, вероятно, иметь для развития естествознания в целом немногим меньшее значение, чем работы по радиоактивности для развития физики и химии.
А.В. Шубников [164]В качестве одного из свидетельств в пользу квантовой физики, приводят, порой, экзотические фазовые переходы второго рода. Напомним, что "фазовыми переходами первого рода" называют агрегатные превращения вещества, идущие с выделением или поглощением энергии. В них скачком меняется в точке перехода плотность, теплоёмкость и другие параметры физического тела. Другое дело, — фазовые переходы второго рода — они происходят без выделения скрытой теплоты, а характеристики вещества в точке перехода меняются плавно, непрерывно. К фазовым переходам второго рода относят переходы ферромагнетик-парамагнетик, проводник-сверхпроводник, нормальный-сверхтекучий гелий и другие, кажущиеся сверхъестественными, с позиций классической физики, превращения. Поэтому, и объяснить их якобы можно — лишь с позиций квантовой физики. Но, на самом деле, как покажем далее, фазовые переходы второго рода не отличаются особо от первого и объясняются целиком в рамках классической физики и представляют собой лишь более сложные превращения вещества, которые, в действительности, — тоже сопровождаются выделением и поглощением тепла.
Более того, выделение и поглощение тепла в этих переходах — обязательно. Совершенно так же, как для переходов первого рода, такое тепловыделение следует из законов термодинамики. Ведь любой фазовый переход подразумевает перестройку атомов вещества. При понижении температуры вещество переходит в энергетически более выгодное состояние, уменьшает свою внутреннюю энергию. Вот почему, эта избыточная энергия выделяется и её необходимо отводить, чтобы перевести вещество из одного состояния в другое. Так, при кристаллизации, атомы выстраиваются в правильном порядке, что уменьшает энтропию соединения и потенциальную энергию взаимодействия атомов. Эта энергия и выделяется в форме скрытой теплоты кристаллизации. То же самое происходит, в действительности, и в фазовых переходах второго рода, скажем, — при переходе парамагнетик-ферромагнетик. Там переход происходит без перестройки взаимного положения частиц, именно поэтому фазовые переходы второго рода не сопровождаются изменением плотности и объёма. Однако, этот переход сопровождается глубокими внутренними перестройками структуры вещества.
Так, при образовании ферромагнетика магнитные моменты электронов выстраиваются параллельно друг другу. То есть, происходит упорядочивание, но не положений частиц, а их ориентаций в пространстве. А упорядочение неизбежно сопровождается снижением энтропии, энергии взаимодействия, тоже выделяемой в форме тепла (при обратном переходе тепло поглощается, на чём основан принцип магнитного охлаждения). И, хотя считают, что фазовые переходы происходят без отдачи теплоты, и что этим они существенно отличаются от фазовых переходов первого рода, реально они, как покажем далее, выделяют скрытое тепло ничуть не хуже. Тем самым, устраняется принципиальное различие между фазовыми переходами первого и второго родов, а, значит, рушатся все представления об исключительности переходов 2-го рода, и становится бессмысленной и ненужной вся их феноменологическая теория, построенная Л. Ландау и В. Гинзбургом, во многом, — на базе квантового подхода. В действительности, фазовые переходы первого и второго рода — совершенно симметричны, подобны, имея одинаковую классическую природу. Разница у них не принципиальная, а количественная, и заключается она в ширине температурного интервала, в пределах которого происходит фазовый переход.
Правильную теорию фазовых переходов второго рода и их связи со степенью симметрии начал развивать ещё Пьер Кюри, как специалист по физической химии, основательно изучивший кристаллы и переход парамагнетик-ферромагнетик. Однако ранняя трагическая смерть помешала Кюри закончить эту грандиозную классическую работу, важную роль которой отмечал наш выдающийся кристаллограф А.В. Шубников [156]. Примечательно, что его однофамилец и современник Л.В. Шубников (по вине Ландау погибший ещё более рано и трагично, чем Кюри) был пионером советской физики низких температур и основателем передовой отечественной криогенной лаборатории, исследователем сверхпроводимости, магнетизма, фазовых переходов второго рода, кристаллов и процесса кристаллизации, что ещё раз отражает их тесную связь. Далее рассмотрим подробнее некоторые из переходов второго рода.
Читать дальшеИнтервал:
Закладка: