Р. Яковлев - Универсальный фундамент Технология ТИСЭ
- Название:Универсальный фундамент Технология ТИСЭ
- Автор:
- Жанр:
- Издательство:ООО Аделант
- Год:2010
- Город:Москва
- ISBN:978-5-93642-257-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Р. Яковлев - Универсальный фундамент Технология ТИСЭ краткое содержание
Разработанное автором оборудование ТИСЭ охраняется патентами наизобретение. Производство и реализация оборудования ТИСЭ без лицензионного договора ЗАПРЕЩЕНО ЗАКОНОМ "О промышленной собственности РФ"
Также в книге подробно описано возведение заглубленного фундамента повышенной несущей способности по технологии ТИСЭ с применением фундаментного бура ТИСЭ–Ф, разработанного автором. Простота технологии, незначительные затраты труда и средств, высокие эксплуатационные характеристики возведенного фундамента позволяют рассматривать технологию ТИСЭ как перспективную в этой области строительства.
В этой книге приведена обзорная информация о грунтах, основаниях и фундаментах, возводимых в условиях индивидуального строительства. Анализ наиболее распространенных типовых фундаментов дается в простой и доступной форме, понятной застройщикам, не имеющим специального образования.
В книге представлено подробное описание технологии ТИСЭ: возведения заглубленного фундамента повышенной несущей способности. Простота технологии, незначительные затраты труда и средств, высокие эксплуатационные характеристики возведенного фундамента позволяют рассматривать его в качестве перспективного направления развития в этой области строительства.
Задача книги — помочь начинающим застройщикам разобраться в выборе оптимального фундамента, научить его самостоятельно принимать правильные решения в этом вопросе с учетом современного уровня развития строительных технологий.
В предлагаемой вашему вниманию книге подробно рассматриваются следующие вопросы:
• общие сведения о грунтах;
• нагрузки, испытываемые фундаментами, и расчет их несущей способности;
• столбчатые и столбчато–ленточные фундаменты;
• поведение фундаментов в различных условиях эксплуатации;
• причины проседания и разрушения фундаментов;
• восстановление фундаментов.
Книга будет полезна не только новичкам в строительстве и профессионалам, но также архитекторам и проектировщикам индивидуального жилья, работающим по иным строительным технологиям.
Универсальный фундамент Технология ТИСЭ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
OA — для фундамента в виде плит, где давление на грунт невелико;
АБ — ленточный мелкозаглубленный фундамент;
АБ (конец) и БВ — столбчатый фундамент.
Остальные фазы работы основания (ГД) реализуются в основном при создании свайных фундаментов, применяемых в индустриальном строительстве (забивные сваи).
При возведении столбчато–ленточного фундамента по технологии ТИСЭ уровень напряжений в основании достаточно высок: задействуются вторая половина фазы АБ, фаза БВ и даже ВГ. Работа основания в широком диапазоне упругих деформаций обеспечивает "мягкое" восприятие нагрузки от веса возведенного строения.
Расчет оснований по несущей способности (для фаз OA, АБ, начало БВ) выполняют через определение требуемой площади подошвы фундамента по следующей формуле:
S>γ n F/γ c R o ,где
S— площадь подошвы фундамента (см 2);
F— расчетная нагрузка на основание (общий вес дома, в том числе фундамент, полезная нагрузка, снеговой покров…) (кг);
γ n = 1,2 — коэффициент надежности;
γ c —коэффициент условий работы имеет следующие величины:
1.0 — глина пластичная, сооружение жесткой конструкции (каменные стены);
1.1 —глина пластичная, сооружения нежесткой конструкции (деревянные или каркасные стены) и жесткой конструкции длинные, с соотношением длины к высоте больше 4;
1.2 —глина слабопластичная, пески пылеватые маловлажные, строения нежесткие и жесткие короткие с соотношением длины к высоте меньше 1,5;
1.2 — крупный песок, строения жесткие длинные;
1.3 — пески мелкие, сооружения любой жесткости;
1.4 — крупный песок, сооружения нежесткие и жесткие длинные;
R o — условное расчетное сопротивление грунта основания для фундаментов
с глубиной заложения 1,5…2 м (определяется по таблицам 4…8).
Таблица 4. Расчетные сопротивления R o крупнообломочных грунтов
Таблица 5. Расчетные сопротивления R Q песчаных грунтов
Таблица 6. Расчетные сопротивления R Q непросадочных глинистых грунтов
Расчетное сопротивление глинистых грунтов и его влажность существенно зависят от пористости грунта ε(отношение объема пор к объему твердых частиц). Для новичка в строительстве этот показатель оценить в реальных условиях достаточно сложно, т. к. извлеченный грунт в свободном состоянии уже не обладает теми показателями, какие он имел на глубине, находясь под давлением.
Автором предложено связать пористость, а следовательно, и несущую способность грунта с глубиной его заложения в зависимости от того, по какую сторону границы промерзания находится подошва фундамента.
Любой грунт при увлажнении проседает и уплотняется. В процессе своего существования пучинистый грунт, расположенный ниже глубины промерзания, уплотняется до состояния "дальше некуда". Ничто не меняет это состояние в течение многих и многих десятков и сотен лет. В то же время грунт, находящийся выше глубины промерзания, постоянно насыщается влагой и при сезонном промораживании увеличивается в объеме. Влага, находящаяся в порах, увеличивает объем этих пор на 10%. Таким образом, грунт, находящийся выше границы промерзания, ежегодно "встряхивается", становясь пористым. Глинистый грунт, находящийся ниже глубины промерзания, обладает минимальной ( ε= 0,3) пористостью и максимальной прочностью.
Просадочные глинистые грунты в сухом состоянии имеют повышенную пористость и вместе с тем обладают высокой механической прочностью, обусловленной сильными структурными связями (табл. 7).
Таблица 7. Расчетные сопротивления R Q просадочных глинистых грунтов природного сложения
Таблица 8. Расчетные сопротивления R Q насыпных грунтов
После механического уплотнения просадочных грунтов природного сложения (трамбование) происходит разрушение жесткого каркаса и потеря прочности:
— прочность сухой супеси — 2,0…2,5 кг/см 2;
— прочность сухого суглинка — 2,5…3,0 кг/см 2.
Большему значению расчетного сопротивления насыпных грунтов соответствуют крупные, средние и мелкие пески, шлаки…
Меньшему значению — пески пылеватые, супеси, суглинки, глины и золы.
Жилой каменный дом 7x8 м в два этажа имеет одну внутреннюю несущую стену. Вес дома с учетом снегового покрова и полезной нагрузки — около 180 т. Фундамент — заглубленный. Грунт — суглинок увлажненный (несущая способность 3,5 кг/см 2 )
Площадь подошвы фундамента определяется по формуле:
S> γ n F/ γ c R o , где
F= 180000 кг
γ c =1,0
R 0 = 3,5 кг/см?
S >1,2* 180000/1,0*3,5 = 61800 см 2 = 6,18 м*
При общей длине фундамента — около 35 м ширина подошвы фундамента должна быть не менее 6,18 / 35 = 0,18 м.
Влияние сейсмичности на несущую способность грунта
Задаваясь той или иной величиной расчетного сопротивления грунта, следует учитывать, что при одновременном воздействии статической нагрузки и вибраций прочность грунта снижается. Грунт, как говорят специалисты, приобретает свойства псевдожидкого состояния.
Индивидуальные застройщики, решившие возводить сейсмостойкий фундамент своими силами, должны учитывать уменьшение несущей способности грунта при сейсмических вибрациях. Ориентировочно табличную величину расчетного сопротивления грунта необходимо уменьшить в 1,5 раза, т. е увеличить площадь подошвы фундамента тоже в 1,5 раза.
Читать дальшеИнтервал:
Закладка: