Игорь Бубнов - Обитаемые космические станции
- Название:Обитаемые космические станции
- Автор:
- Жанр:
- Издательство:Воениздат
- Год:1965
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Бубнов - Обитаемые космические станции краткое содержание
Предлагаемая читателю книга рассказывает о проблемах, которые необходимо решить на предстоящем этапе освоения космического пространства — при создании обитаемых космических станций на орбитах вокруг Земли. На основе изучения и критического анализа обширных материалов, опубликованных в советской и зарубежной печати, авторы рассказывают о тех трудностях, которые предстоит преодолеть ученым и инженерам при создании орбитальных станций. Читатель найдет в книге описание некоторых проектов обитаемых космических станций. Книга рассчитана на широкий круг читателей, интересующихся перспективами освоения космического пространства.
Обитаемые космические станции - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, встреча в космосе — одна из самых насущных задач не только строительства ОКС, но и вообще, освоения межпланетного пространства. Современная техника стоит на пороге осуществления встречи в космосе. Напомним, что минимальное расстояние между советскими космическими кораблями «Восток-3» и «Восток-4» было всего лишь около 5 км.
Как же будет осуществляться полет для встречи транспортной ракеты с обитаемой космической станцией? Он может складываться из четырех этапов. Первый этап — это старт ракеты и активный участок траектории выведения, т. е. полет с работающими двигателями. Здесь нужно сразу оговориться, что ракета может стартовать не только с Земли, но и с какой-либо промежуточной орбиты (так называемой орбиты ожидания). Второйэтап начинается после отсечки подачи топлива и продолжается до тех пор, пока ракета в свободном полете по траектории с выключенными двигателями не подойдет на минимальное расстояние к ОКС. В общем случае корректировка с помощью двигателей может производиться и на этом участке траектории, но это невыгодно из-за повышенного расхода топлива. Конечно, выйти сразу непосредственно в точку нахождения цели вряд ли возможно, поэтому на третьем этапепроисходит сближение ракеты с ОКС, причем ракета движется по направлению к ОКС в одной с ней плоскости под действием тяги двигателей. При этом если ранее ракета и ОКС находились в разных плоскостях, то в начале этапа происходит переход ракеты на орбиту ОКС. Четвертый этап, заключительный, представляет собой непосредственное контактирование, швартовку ракеты к цели.

На рис. 16 показаны различные траектории полета Для встречи на орбите: полет в плоскости орбиты ОКС на всем пути до встречи (рис. 16, а) с использованием орбиты ожидания, расположенной в плоскости орбиты (рис. 16, б), и, наконец, общий случай, когда орбита ОКС и траектория ракеты лежат в разных плоскостях (рис. 16, в).
С точки зрения получения минимального расхода топлива первый этап полета для встречи фактически определяет место и время старта, а значит, и характер траектории полета на следующем этапе. Но не только это. Например, при переходе с одной орбиты на другую требуется включение Двигателей, а каждое включение двигателей — это дополнительный расход топлива. Поэтому выгоднее всего запускать ракету в плоскости траектории ОКС, т. е. в тот момент, когда плоскость орбиты цели проходит через точку старта.
Здесь необходимо оговориться, что случай, когда траектория ракеты и орбита ОКС будут находиться в одной плоскости, на практике может встретиться очень и очень редко. Даже если запуск обоих космических тел будет производиться из одной точки, придется долго ожидать момента, подходящего для старта ракеты, а период обращения ОКС должен быть при этом заранее специально подобран. Поэтому следует говорить о совпадении плоскостей условно, пренебрегая тем небольшим импульсом тяги, который потребуется ракете для полного совмещения плоскостей орбиты и траектории. В общем случае, когда в начальный момент полета плоскости не совмещены, очень важно правильно выбрать момент старта, а также (в любом случае) величину начальной скорости свободного полета. Несоблюдение расчетных параметров приведет к излишним энергетическим затратам и большим трудностям в управлении.
Условимся называть скоростью V 0ту начальную скорость свободного полета, которую ракета получит в момент отсечки двигателей, а точкой встречи ракеты с ОКС — конец второго этапа полета для встречи, после чего происходит переход ракеты на орбиту ОКС. Время, которое занимает первый этап полета, зависит от той перегрузки, которая допустима для пассажиров и грузов ракеты. Ракета «Сатурн», например, уже на пятой минуте после отрыва от Земли должна достигать высоты 110 км и скорости около 6 км/сек. Величина перегрузки при этом составит 10–12 g.
Управление ракетой на первом этапе производится наземным командным пунктом, с которого в зависимости от отклонений в траектории ракеты и колебаний ее положений в пространстве подаются сигналы на органы управления. В начальной стадии полета, в плотных слоях атмосферы, ими являются аэродинамические стабилизаторы, а затем рули в струе пламени двигателей (газовые рули). Управление возможно также отклонением самих струй газа в результате поворота двигателей или их сопел с помощью шарниров ( верньерные двигатели) а также другими специальными методами.

В конце выведения ракета может иметь скорость V 0меньше первой космической. Тогда ее траектория, называемая баллистической, замкнется на поверхности Земли (рис 17) В случае когда скорость V 0больше или равна первой космической, ракета будет двигаться по замкнутому эллипсу или по кругу как частному случаю эллипса. Если траектория ракеты касается орбиты ОКС, не пересекая ее, то встреча возможна лишь в точке касания. Но орбита ОКС может и пересекаться с траекторией полета ракеты. Тогда, если рассматривать орбиты, сильно отличающиеся друг от друга, встреча возможна в одной из двух точек пересечения. В любом случае в точке встречи ракета должна получить соответствующее по величине и направлению приращение скорости, чтобы перейти на орбиту ОКС.
Рассмотрим условия встречи в случае, когда траектория ракеты и орбита станции пересекаются.
Представим себе, что станция движется по круговой орбите с высотой R (см. рис. 17). Ракета, получившая скорость V 0, движется по эллипсу с высотой апогея R a, большей R (R aзависит от высоты перигея R nи скорости V 0). Эллипс пересекает орбиту ОКС в двух точках т и n, в каждой из которых возможна встреча ракеты с ОКС. В момент встречи в точках m и n скорость ракеты отличается как по величине, так и по направлению от скорости цели. Потребуется импульс тяги, уравнивающий эти величины. Возможность перехода на орбиту ОКС в точках m и n зависит от величины этой тяги, т. е. от возможного приращения скорости v в точке перехода.
Читать дальшеИнтервал:
Закладка: