Вадим Грибунин - Цифровая стеганография
- Название:Цифровая стеганография
- Автор:
- Жанр:
- Издательство:Солон-Пресс
- Год:2002
- Город:Москва
- ISBN:5-98003-011-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Грибунин - Цифровая стеганография краткое содержание
Интерес к стеганографии появился в последнее десятилетие и вызван широким распространением мультимедийных технологий. Методы стеганографии позволяют не только скрытно передавать данные, но и решать задачи помехоустойчивой аутентификации, защиты информации от несанкционированного копирования, отслеживания распространения информации по сетям связи, поиска информации в мультимедийных базах данных.
Международные симпозиумы по скрытию данных проводятся с 1996 года, по стеганографии первый симпозиум состоялся в июле 2002 года. Стеганография – быстро и динамично развивающаяся наука, использующая методы и достижения криптографии, цифровой обработки сигналов, теории связи и информации.
На русском языке стеганографии было посвящено только несколько обзорных журнальных статей. Данная книга призвана восполнить существующий пробел. В ней обобщены самые последние результаты исследований зарубежных ученых. В книге рассмотрены как теоретические, так и практические аспекты стеганографии, выполнена классификация стегосистем и методов встраивания, детально исследованы вопросы повышения пропускной способности стегоканала, обеспечения стойкости и незаметности внедрения, приведено более 50 алгоритмов встраивания данных.
Книга предназначена для студентов, аспирантов, научных работников, изучающих вопросы защиты информации, а также для инженеров-проектировщиков средств защиты информации. Также несомненный интерес она вызовет у специалистов в области теории информации и цифровой обработки сигналов.
Цифровая стеганография - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
— ЦВЗ обнаруживается всеми желающими. В этом случае он служит для уведомления о собственнике защищаемого контента и для предотвращения непреднамеренного нарушения прав собственника.
— ЦВЗ обнаруживается, по крайней мере, одной стороной. В этом случае его использование связано с поиском нелегально распространяемых копий, например, в сети Интернет.
— ЦВЗ крайне трудно модифицировать или извлечь из контента. В этом случае ЦВЗ служит для аутентификации.
Одновременное выполнение вышеприведенных требований невозможно, так как они являются противоречивыми. Поэтому, в различных приложениях используются как системы ЦВЗ с секретным, так и с общедоступным ключом. Системы с общедоступным ключом находят гораздо большее применение, так как они могут быть использованы как для обнаружения, так и для предотвращения несанкционированного использования контента. Для того, чтобы поисковая система обнаружила ЦВЗ с секретным ключом, ей необходимо проверить каждое изображение на наличие в нем каждого из возможных ЦВЗ, что является вычислительно трудоемкой задачей. В случае же общедоступного ЦВЗ алгоритм обнаружения единственный. Однако, общедоступные ЦВЗ обладают серьезным недостатком: так как их местоположение известно, то их можно без труда извлечь из защищаемого изображения.
Создается впечатление, что ЦВЗ с общедоступным ключом не могут быть робастными. Однако, является ли таковым ЦВЗ с секретным ключом? Да, его местоположение неизвестно, но лишь до тех пор, пока он не «вступает в действие». Как только ЦВЗ начинает выполнять свои функции по защите контента, у атакующего появляется все больше информации о нем, то есть ЦВЗ становится все более «открытым». В главе 2 представлен ряд атак, связанных с выявлением поведения детектора при незначительных модификациях изображения. Таким образом, сама природа ЦВЗ такова, что их в любом случае можно считать общедоступными, несмотря на наличие секретного ключа.
В работе [14] представлена система ЦВЗ, в которой этапы аутентификации и обнаружения разделены. Это делает возможным создание ЦВЗ, который легко обнаруживается, но трудно удаляется. Эта система строится на основе доказательства с нулевым знанием [11].
Представим себе следующую ситуацию. Алиса обладает некоторой информацией и хочет доказать этот факт Бобу. При этом доказательство должно быть косвенным, то есть Боб не должен получить каких-либо новых знаний об этой информации. Такое доказательство и называется доказательством с нулевым знанием. Оно принимает форму интерактивного протокола. Боб задает Алисе ряд вопросов. Если Алиса действительно владеет некоторой информацией, то она ответит на все вопросы правильно; если же она мошенничает, то вероятность правильного угадывания мала и уменьшается с увеличением количества вопросов.
В целом базовый протокол с нулевым знанием строится следующим образом:
1. Алисе известна некоторая информация, являющаяся решением некоторой трудной проблемы. Она использует эту информацию и случайное число для превращения этой трудной проблемы в другую, изоморфную первой и получает ее решение.
2. Боб просит Алису либо доказать, что старая и новая проблемы изоморфны, либо открыть решение новой проблемы и доказать, что оно является таковым. Алиса выполняет просьбу Боба.
3. Этапы 1 и 2 повторяются n раз.
В качестве трудной проблемы выбирается обычно вычисление по однонаправленной функции. Одной из наиболее известных однонаправленных функций является дискретный логарифм. Рассмотрим построение протокола с нулевым знанием на основе дискретного логарифма. При этом общеизвестными являются: большое простое число и порождающий элемент
. Алиса выбирает некоторое число
и публикует
. Так как определение
на основе знания M есть вычислительно трудная задача, то знание Алисой
подтверждает ее идентичность.
Протокол строится следующим образом.
1. Алиса генерирует другое простое число , вычисляет число
и посылает его Бобу. (То есть она передает Бобу изоморфную трудную задачу).
2. Боб может попросить Алису:
а) открыть , то есть дать решение изоморфной трудной задачи;
б) открыть , то есть логарифм произведения MN .
3. Алиса выполняет просьбу Боба, и шаги протокола повторяются при другом значении N .
Протоколы доказательства с нулевым знанием могут строиться также на основе использования свойств изоморфизма графов [11] и других трудных задач. В [11] рассмотрены также и слабости этих протоколов.
Итак, в криптографии известна и решена задача доказательства существования некоторой информации без раскрытия сведений о ней. К сожалению, идея доказательства с нулевым знанием не может быть непосредственно применена для построения системы ЦВЗ, из-за специфики последней. Далее рассмотрена эта специфика и возможные модификации протокола доказательства с нулевым знанием для применения в ЦВЗ [14].
В рассмотренном выше протоколе Алиса имеет возможность публиковать открытое число M и различные значения N , а также и
. В случае же системы ЦВЗ вся эта информация должна встраиваться в изображение. Если ее сделать доступной для Боба, тот может просто удалить ее из изображения, так как это не приведет к существенному ухудшению его качества. Возможным выходом являлось бы использование надсознательного канала, то есть ЦВЗ в виде хэш-функции от наиболее значимых признаков изображения. В этом случае удаление ЦВЗ приведет к значительной деградации изображения. Однако, таким образом невозможно встраивать новую информацию, например, вычисленное значение M . По существу, надсознательный канал доступен для Алисы в режиме «только для чтения».
Вначале рассмотрим возможную реализацию протокола с нулевым знанием в известной схеме построения системы ЦВЗ, носящей имя Питаса [15]. В основе схемы Питаса лежит разделение всего множества пикселов на два подмножества, увеличение значений на некоторое число k в одном подмножестве и уменьшение на то же число k - в другом. Таким образом, средние значения двух подмножеств будут отличаться на 2 k .
Читать дальшеИнтервал:
Закладка: