Григорий Николаев - Металл Века
- Название:Металл Века
- Автор:
- Жанр:
- Издательство:Металлургия
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Григорий Николаев - Металл Века краткое содержание
Металлом века заслуженно называют титан. Об истории этого металла, его замечательных свойствах, способах производства, об использовании его в авиации, космонавтике, химической индустрии, в быту, на транспорте, в медицине, а также о его возможностях и перспективах применения увлекательно рассказано в этой книге.
Первое издание книги того же названия, опубликованное в Днепропетровске (издательство ”Промiнь”) в 1975 г., было отмечено второй премией и Дипломом второй степени на Всесоюзном конкурсе лучших произведений научно-популярной литературы. Второе издание было выпущено в 1982 г. издательством "Металлургия”.
Предназначена для широкого круга читателей
Металл Века - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но беда в том, что железо не выдерживает сильных морозов, и уже при температуре 40 °С ниже нуля становится хрупким. А ведь на земном шаре встречаются и такие места, где температура достигает 70 °С холода, и это не только антарктический континент, но и вполне обитаемые земли — Якутия, Заполярье. Славится своими морозами и вся Сибирь. В Якутии, например, довольно часты морозы, превышающие 60 °С. При таких температурах резко возрастает число поломок транспорта, машин и механизмов, особенно землеройных.
Промерзший грунт с трудом поддается механическому воздействию и может легко вывести из строя машину, работающую даже при обычной температуре воздуха. Насколько же увеличивается число неисправностей, когда материал, из которого сделана машина, становится сам по себе хрупким, непрочным!
В условиях Крайнего Севера число повреждений техники в зимнее время по сравнению с летним увеличивается в три, а нередко и в десять раз. А ведь сейчас стоит задача все интенсивнее осваивать богатства Севера и Сибири. Значит, нужна особая техника, техника в "северном" исполнении — надежная и долговечная.
Металлурги разрабатывают специальные марки стали, экспериментируют, стараются "вылечить" железо от столь досадной хрупкости при низких температурах. Было замечено, что добавка циркония в значительной степени снижает хрупкость железа. Получена особая сталь для Севера, которая намноголучше обычной. Но все же и она не лишена тех недостатков, от которых свободна "легкая сталь" — титан.
То, что так разрушает железо, — холод — титану нипочем. Большинство серийных титановых сплавов совершенно спокойно переносит температуру до минус 196 °С, некоторые свободно выдерживают температуру жидкого водорода (минус 253 °С), а учеными Института металлургии Академии наук СССР создан титановый сплав, который не разрушается даже в самой холодной жидкости мира ~ жидком гелии (температура минус 269 °С). Что такому хладостойкому материалу, как титан, 60—70 °С ниже нуля? Сущие пустяки.
Разработанные титановые сплавы предназначены для изготовления оборудования, работающего в районах Заполярья и Крайнего Севера. Детали экскаваторов, тракторов, бульдозеров, сделанные из таких сплавов, будут необычайно долговечными и по-настоящему надежными.
В северных нефтегазодобывающих районах нередко выходят из строя центробежные колеса магистральных газопроводов. Сделанные из титана, они станут безотказными.
Но холод далеко не всегда враг. Часто он крайне необходим. И холод научились получать искусственно: начиная с прошлого века стали создавать специальные устройства, вырабатывающие холод средь жаркого лета. Родилась холодильная техника. Мы хорошо знаем ее в быту: домашние холодильники — полноправные ее представители. Правда, это не те холодильники, в которых развиваются температуры в 100 °С и более ниже нуля, необходимые во многих областях техники, и в которых применяются титановые сплавы.
По данным Всесоюзного научно-исследовательского института холодильного машиностроения, применение титановых сплавов для производства аммиачных компрессоров холодильных установок позволит создать машину лишь с одним агрегатом вместо двух и даст около 70 тысяч рублей годовой экономии по каждой установке. Из титана целесообразно изготовлять емкости для хранения и транспортировки жидкого гелия, водорода, азота. Кстати, температура жидкого азота (минус 196 °С) в технике низких температур является граничной. Она отделяет холодильную технику от криогенной.
ВБЛИЗИ АБСОЛЮТНОГО НУЛЯ
Слово "криогенный” происходит от греческого ”криос” — холод. Но ведь холод — и 50, и 100, и 150 °С ниже нуля. Почему же возникла еще какая-то особая техника холода? Потому что многие вещества резко меняют свои физические свойства, если их охладить ниже температуры жидкого азота (ниже минус 196 °С).
Брусок свинца, например, обычно звучащий при ударе глухо вследствие своей мягкости, при криогенных, сверхнизких температурах твердеет и начинает звенеть. Сталь, которая никуда не годится уже в обычный сильный мороз, будучи охлажденной ниже 200 °С, рассыпается на осколки при малейшем ударе. У одних веществ резко возрастает теплопроводность, у других, напротив, падает. Значительно уменьшается электрическое сопротивление чистых металлов и сплавов.
Криогенные температуры начинаются с температуры жидкого азота. Но какого предела они достигают? Абсолютного нуля — минус 273,16 °С. Более низкой температуры в природе не бывает. Почему? Потому что именно при этой температуре молекулы прекращают свое движение, их кинетическая энергия равна нулю.
А ведь та или иная температура не что иное, как уровень кинетической энергии вещества.
Практически достичь абсолютного нуля невозможно, но можно максимально приблизиться к нему. Сейчас только сотые доли градуса отделяют исследователей от него. А температуры, отличающиеся от абсолютного нуля в несколько граду-
сов, были достигнуты еще в самом начале нашего века. Жидкий гелий имеет температуру минус 263—269 °С. Впервые его получил голландский физик Гейке Камерлинг-Оннес в 1911 году.
Вполне понятно, что, едва получив столь необычное вещество, голландский профессор принялся экспериментировать с ним. Один из опытов заключался в том, что ученый погружал в необычный гелий различные вещества и измерял их электросопротивление. При проведении именно этого опыта и было обнаружено явление, названное Камерлинг-Оннесом сверхпроводимостью.
Некоторые металлы, погруженные в жидкий гелий, совершенно утрачивали электрическое сопротивление. Происходило это скачком, резко, мгновенно. Вещества как бы становились совершенно другими, непохожими на себя. Сейчас установлено, что способностью к сверхпроводимости обладают 26 чистых металлов и большое количество сплавов и соединений. Среди них и титан, который как известно, обычно плохо проводит электрический ток.
В начале века сверхпроводимость не имела никакого практического значения, однако в наши дни она, как и вся криогенная техника, играет важную роль в дальнейшем научно-техническом прогрессе.
Большие успехи достигнуты в деле разработки быстродействующих сверхпроводящих переключателей, так называемых криотронов, предназначенных для использования в новейших электронно-вычислительных машинах. Прежде прогресс электроники связывали исключительно с полупроводниками, ныне — со сверхпроводниками.
Для накапливания энергии от маломощного источника тока с целью мгновенного ее разряда очень удобны сверхпроводящие соленоиды. С помощью сверхпроводников создают устройства для усиления сигналов. Широко изучается вопрос о возможности создания сверхпроводящих линий электропередач, кабели которых должны охлаждаться жидким гелием.
Читать дальшеИнтервал:
Закладка: