Станислав Зигуненко - 100 великих достижений в мире техники
- Название:100 великих достижений в мире техники
- Автор:
- Жанр:
- Издательство:«Вече»
- Год:2012
- Город:Москва
- ISBN:978-5-4444-0048-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Зигуненко - 100 великих достижений в мире техники краткое содержание
Чудеса бывают разные. Одни – сказочные, другие – реальные. Например, запуск в космос человека. В 1961 году многие этот полет воспринимали как техническое чудо. Не случайно и С.П. Королев – главный конструктор, под руководством которого был осуществлен данный проект, назвал эту и подобные разработки «фантастикой в чертежах».
Подобные реальные чудеса нередко случаются и в наши дни. И порой мы даже им не удивляемся. Каждое такое «чудо» есть концентрат остроумной идеи, точного расчета, великолепных технологий и упорного труда. Такими чудесами стоит гордиться, по ним стоит учиться.
О ста самых поразительных открытиях, разработках и изобретениях XX и XXI веков рассказывает очередная книга серии.
100 великих достижений в мире техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ученые утверждают, что вовремя прошедший дождь намного эффективней своевременной поливки…
«Как специалиста, который некогда работал в производственном объединении “Союзводпроект”, – рассказал Игорь Алексеевич Остряков, – электрические поля интересуют меня еще и вот с какой точки зрения. Питательные вещества из почвы могут проникнуть в растения только в виде водных растворов. Казалось бы, растению все равно, откуда получать воду – из дождевого облака или из дождевальной установки. Ан нет, опыты неопровержимо доказывают: вовремя прошедший дождь намного эффективней своевременной поливки»…
Стали ученые разбираться, чем дождевая капля отличается от водопроводной. И выяснили: в грозовом облаке капельки при трении о воздух приобретают электрический заряд. В большинстве случаев положительный, иногда отрицательный. Вот этот-то заряд капли и служит дополнительным стимулятором роста растений. Вода в водопроводе такого заряда не имеет.
Более того, чтобы водяной пар в облаке превратился в каплю, ему нужно ядро конденсации – какая-нибудь ничтожная пылинка, поднятая ветром с поверхности земли. Вокруг нее и начинают скапливаться молекулы воды, превращаясь из пара в жидкость. Исследования показали, что такие пылинки очень часто содержат в своем составе мельчайшие крупинки меди, молибдена, золота и других микроэлементов, благотворно влияющих на растения.
Ну а раз все это так, почему бы и искусственный дождик не сделать подобием естественного? Конечно, сказать легче, чем выполнить, но определенные достижения в этой области уже есть. В конце прошлого века И.А. Остряков получил авторское свидетельство на электрогидроаэроионизатор – прибор, который создает электрический заряд на капельках воды. По существу, это устройство представляет собой электрический индуктор, который устанавливается на трубе разбрызгивателя дождевальной установки с таким расчетом, чтобы сквозь его рамку пролетела уже не струя воды, а рой отдельных капель.
Сконструирован и дозатор, позволяющий добавлять в водный поток микроэлементы. Устроен он так. В рукав, подающий воду в дождевальную установку, врезается кусок трубы и электроизоляционного материала. A в трубе располагаются молибденовые, медные, цинковые электроды… Словом, из того материала, какой микроэлемент нужен для подкормки. При подаче тока ионы начинают переходить с одного электрода на другой. При этом часть их смывается водой и попадает в почву. Количество ионов можно регулировать, меняя напряжение на электродах.
Если же нужно насытить почву микроэлементами бора, йода и других веществ, не проводящих электрического тока, в действие вступает дозатор другого типа. В трубу с проточной водой опускают кубик из бетона, разделенный внутри на отсеки, в которых и помещаются нужные микроэлементы. Крышки отсеков служат электродами. Когда на них подается напряжение, микроэлектроды проходят сквозь поры в бетоне и уносятся водою в почву.
Аэродинамика… плуга
На одном из слетов научных обществ учащихся устроили ребята защиту фантастических проектов. Ну и повеселились же! Например, мальчишки из Краснодара предложили пахать с помощью… самолетов! Прицепить-де к крылатому трактору плуг – и полный вперед! Только успевай поднимать плуг над городами, чтобы за трубы не зацепиться…
Но в каждой хорошей шутке, как известно, есть доля истины. «Конечно, плуг и самолет движутся каждый в своей среде: плуг – в почве, самолет – в воздухе, – рассудил сотрудник НИИ кукурузы, кандидат технических наук С.С. Тищенко. – Но это вовсе не значит, что между ними нет никакого сходства»…
Присмотримся, при движении плуг, стремясь сдвинуть почву перед собой, прежде всего сжимает, а потом разрушает ее. Но ведь и самолет в полете тоже разрушает структуру воздуха! Взвихривает его и как бы разбрасывает в стороны. При этом впереди самолета тоже образуется уплотнение – ударная волна. И эта волна, как ни странно на первый взгляд, имеет ту же физическую сущность, что и уплотнение в почве – расстояние между молекулами уменьшается.
Плуг XXI века учитывает и законы аэродинамики
«Отсюда первый вывод: часть энергии любого движущегося тела затрачивается на разрушение среды и предшествующее этому сжатие, – продолжает Тищенко. – Запомним и пойдем дальше»…
Под действием плуга разрушенная почва движется по отвалу, сползая сплошным потоком. Так она приобретает кинетическую энергию, за счет которой и происходят оборот пласта, отбрасывание почвы в соседнюю борозду… Воздушный поток, обтекающий самолет, тоже приобретает кинетическую энергию. При этом поток закручивается в турбулентные вихри, которые еще долго вращаются и после того, как самолет пролетел.
На очереди вывод второй: часть энергии движущегося тела обязательно затрачивается и на сообщение кинетической энергии частицам, соприкасающимся с ним.
Наконец, третий вывод: и при движении плуга в почве, и при полете самолета обязательно трение, на преодоление которого расходуется часть энергии.
В итоге мы с вами, вслед за замечательным ученым, большим специалистом в области механизации сельского хозяйства академиком В.П. Горячкиным, придем к такому закону: «Любое тело, движущееся в среде, затрачивает энергию как на ее разрушение, раздвигание в стороны, так и на трение…»
А теперь посмотрим, какие затраты энергии полезны, а какие вредны.
Разрушение почвы лемехом, конечно, полезно – это и есть основная задача пахоты: взрыхлить землю, чтобы растениям было удобнее развиваться. А вот расходы на сжатие и трение вредны, они препятствуют выполнению основной задачи.
Раздвигание воздуха самолетом тоже полезно – иначе летательному аппарату просто негде было бы разместиться. А вот закручивать воздух вихрями, нагревать его трением о фюзеляж конструкторам не хотелось бы. Чтобы уменьшить нежелательные потери энергии, они стараются придать летательным аппаратам обтекаемую форму, подобрать такие материалы, когда бы обтекание было не турбулентным, вихревым, а ламинарным, т, е. спокойным, без завихрений.
Ну а что могут предложить конструкторы сельхозтехники? Тоже немало. В последние годы они провели целый ряд исследований по совершенствованию динамики плуга. Углы заточки лемехов, кривые лемешных отвалов подбираются так, чтобы почва разрушалась с наименьшими затратами энергии. А то порой даже могучие «Кировцы» оказываются не в силах тащить за собой многолемешные, широкозахватные плуги.
Читать дальшеИнтервал:
Закладка: