Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Название:CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Автор:
- Жанр:
- Издательство:ООО «Ай-Эс-Эс Пресс»
- Год:2006
- Город:Москва
- ISBN:5-87049-260-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии краткое содержание
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Подсети поддерживают виртуальные сетевые сегменты, которые разделяют потоки данных не на уровне сетевых кабелей, а на логическом уровне. Конфигурация подсетей очень часто совпадает с физической конфигурацией, но подсети могут разделять и физические сегменты сетей.
Сетевая адресация организует хосты в группы. Это может повысить безопасность (изолируя критически важные узлы) и уменьшить поток данных в сети (запретив связь между узлами, которые не должны обмениваться данными).
В целом, адресация в сети становится еще более эффективной при использовании подсетей и/или суперсетей.
Виртуальные частные сети (VPN)
Виртуальные частные сети VPN используют общественные сети для обмена частной информацией.
Большинство реализаций VPN использует сеть Интернет в качестве общественной сети и множество специализированных протоколов для того, чтобы организовывать и поддерживать частное соединение через Интернет. В VPN реализован клиент-серверный подход. VPN-клиенты авторизуют пользователя, шифруют данные и другими способами поддерживают сеансы связи с серверами, используя технологию, которая называется туннелирование (tunneling).
Подсети
Регулирующие органы, которые администрируют использование протокола IP, зарезервировали некоторые сети для внутреннего использования. В целом, локальные сети, которые используют внутренние зарезервированные адреса, имеют больше возможностей для управления конфигурацией IP и доступом к сети Интернет. Подсети позволяют отделять потоки данных в одной сети друг от друга на основе сетевой конфигурации. Организуя узлы в группы, подсети могут улучшить производительность и повысить безопасность сети. Подсети основаны на концепции расширенных сетевых адресов для индивидуальных компьютеров (или других сетевых устройств). Расширенный сетевой адрес включает в себя сетевой адрес и дополнительные биты, которые представляют номер подсети.
Адресная схема протокола IPv6
Хотя эта адресная схема до сих пор еще не получила широкого распространения, можно не сомневаться, что в будущем сети будут использовать именно ее, хотя бы только потому, что она предоставляет большее количество доступных адресов.
В адресной схеме протокола IPv6 используется 16 байт (128 бит), а не 4 байта (32 бита).
Это позволяет получить более чем 300,000,000,000,000,000,000,000,000,000,000,000,000 возможных адресов (256 16).
Предпочтительная форма записи адреса в протоколе IPv6 использует шестнадцатеричную систему счисления в виде восьми 16-битных частей:
BA98:FEDC:800:7654:0:FEDC: BA98:7654:3210
В шестнадцатеричной системе счисления, в отличие от десятичной, используются не только цифры, но и буквы. Так, А обозначает 11 в десятичной системе, В— 12, С— 13, D— 14, Е— 15 и F — 16.
Обратите внимание, что нет необходимости записывать в отведенном поле все старшие нули, но в поле должна присутствовать хотя бы одна цифра.
В будущем по мере увеличения количества сотовых телефонов, карманных компьютеров и других сетевых устройств, вероятно, возникнет нужда в таком расширенном адресном пространстве.
Типы адресов IPv6
IPv6 не использует классы адресов. Вместо этого поддерживается три типа IP-адресов:
— Одноадресные ( Unicast )
— Многоадресные ( Multicast )
— Групповые ( Anycast )
Одноадресная ( unicast ) и многоадресная ( multicast ) передача в IPv6 концептуально организована так же, как и в IPv4. IPv6 не поддерживает широковещательную передачу (broadcast), но многоадресная ( multicast ) передача позволяет достичь того же эффекта.
Многоадресные (multicast) адреса в IPv6 начинаются с «FF» (255), как и в IPv4.
Групповая ( anycast ) передача в IPv6 является вариацией многоадресной ( multicast ) передачи, но если многоадресная передача доставляет сообщения на все узлы группы, то групповая передача доставляет сообщение на один из узлов группы. Групповая ( anycast ) передача в данном случае предназначена для балансирования нагрузки и повышения отказоустойчивости серверов.
Зарезервированные адреса IPv6
IPv6 резервирует только два специальных адреса: 0:0:0:0:0:0:0:0 и 0:0:0:0:0:0:0:1.
IPv6 использует 0:0:0:0:0:0:0:0 для внутренних нужд протокола, поэтому узлы не могут использовать его для коммуникационных целей. А адрес 0:0:0:0:0:0:0:1 в IPv6 используется как адрес обратной связи, как адрес 127.0.0.1 в IPv4.
Служба имен доменов (DNS)
Хотя IP-адреса позволяют компьютерам и маршрутизаторам эффективно обмениваться информацией, люди предпочитают вместо чисел использовать имена.
Служба имен доменов DNS (Domain Name System) выбирает лучшее из этих двух подходов к адресации.
DNS позволяет назначать узлам в сети Интернет не только IP-адрес, но и соответствующее имя, которое называется доменным именем. Для того чтобы DNS работала корректно, все имена должны быть уникальны в международном масштабе. А это в свою очередь породило целую индустрию, занимающуюся регистрацией и спекуляциями на доменных именах в Интернете.
DNS — это иерархическая система, которая организует все зарегистрированные имена в древовидную структуру.
В ее основании или в корне этого дерева находятся группы доменов верхнего уровня, среди которых есть знакомые всем имена, как com, org и edu, а также многочисленные имена, связанные со странами, такие, как аu (Австралия), rи (Россия), fi (Финляндия) или uк (Великобритания).
Обычно доменные имена этого уровня не выставляются на продажу и их нельзя купить, но хорошо известен случай с доменом tv , право регистрации в котором в 2000 году было продано островом Тувалу частной компании.
Ниже доменов первого уровня находятся домены второго уровня, такие, как cctvlabs.com , которые можно зарегистрировать у многих уполномоченных организаций-регистраторов.
Регистрацию в доменах com, org и edu регулирует корпорация ICANN ( Internet Corporation for Assigned Names and Numbers ). Домены нижнего уровня, такие, как cctvfocus.cctvlabs.com регистрируют и администрируют владельцы домена верхнего уровня. DNS также поддерживает три дополнительных уровня иерархического дерева.
Точка всегда разделяет в DNS уровни иерархии. DNS — это распределенная система. База данных DNS содержит список зарегистрированных доменных имен. Также она содержит соответствия между доменными именами и IP-адресами. Впрочем, для нормальной работы DNS требует усилия многих компьютеров (серверов), так как ни один компьютер не содержит полную базу DNS.
Каждый DNS-сервер поддерживает только часть иерархической структуры — один уровень дерева и только одну зону или часть ее на этом уровне. Верхний уровень иерархической структуры DNS (корневой уровень) обслуживается 13 серверами, которые называются серверами корневого уровня ( root name servers ). Эти серверы получили некоторую известность, так как они играют уникальную роль в сети Интернет. Эти серверы поддерживаются различными независимыми организациями и имеют уникальные буквенные наименования А, В, С и так далее вплоть до М. Десять этих серверов находятся на территории США, один — в Японии, еще один — в Лондоне, и последний — в Стокгольме (Швеция). DNS работает по клиент-серверному принципу. Получая запросы от клиентов, которые называются распознавателями (resolver), сервер отсылает им IP-адреса, соответствующие запрошенному имени. Интернет-провайдеры и многие организации устанавливают свои локальные распознаватели и DNS-серверы. Большинство DNS-серверов работают как распознаватели, перенаправляя запросы вверх по иерархическому дереву на DNS-серверы более высокого уровня и делегируя запросы другим серверам. В итоге DNS-серверы возвращают распознавателям соответствия адреса имени или имени адресу.
Читать дальшеИнтервал:
Закладка: