Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Название:CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
- Автор:
- Жанр:
- Издательство:ООО «Ай-Эс-Эс Пресс»
- Год:2006
- Город:Москва
- ISBN:5-87049-260-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владо Дамьяновски - CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии краткое содержание
Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 9.19. Сегодня на рынке присутствует огромное количество цифровых видеорегистраторов
Вполне очевидно, что мы стремимся получить максимально высокое качество изображения, но нужно понимать, что, независимо от наших действий, качество сжатого изображения никогда не будет выше, чем у несжатого. Количество пикселов, которое содержится в оцифрованном изображении от любой телекамеры с аналоговым видеосигналом, даже при записи полного кадра составит в лучшем случае всего около 415000 пикселов для PAL и 345000 для NTSC. Чтобы показать, много это или мало, достаточно в качестве примера вспомнить о современных цифровых фотоаппаратах (например, фотоаппарат, у которого заявлено 4000000 пикселов). Поэтому, когда заказчик спрашивает о причине пикселизации при увеличении кадра, экспортированного с цифрового видеорегистратора, ответ будет простым: таково количество пикселов в оцифрованном изображении. Телекамеры, используемые в видеонаблюдении, дают нам такие кадры, которые имеют значительно более низкое разрешение, чем кадры, полученные с помощью пленочного или цифрового фотоаппарата, а поэтому их не стоит и сравнивать.
Таким образом, когда вы собираетесь проектировать систему видеонаблюдения, от которой требуется возможность распознавания лиц и автомобильных номеров, то следует брать в расчет и количество пикселов в оцифрованном изображении. Об этом мы еще поговорим в конце этой главы, где будет дано несколько рекомендаций по проектированию таких систем видеонаблюдения.

Рис. 9.20. Аналого-цифровое преобразование сигнала и его передача в типичной цифровой системе видеонаблюдения
Для того чтобы показать, какой поток данных потребуется для передачи видео, оцифрованного согласно рекомендации ITU-601, мы проведем несколько простых вычислений. Умножим количество отсчетов в каждой строке (864 для PAL и 858 для NTSC) на количество строк телевизионного стандарта (625 и 525).
Результат мы умножим на количество кадров в секунду (25 и 30), и получим одинаковый поток данных при оцифровке каждого телевизионного стандарта, предполагая, что для представления яркостного сигнала используется 8 битов, и 8 битов для представления двух цветоразностных сигналов (4 бита для С ги 4 бита для С b).
Для PAL: 864 х 625 х 25 х (8+8) = 216 Мбит/с, из которых активный видеопоток составит 720 х 576 х 25 х 16 = 166 Мбит/с.
Для NTSC: 858 х525 х 29.97 х (8+8) = 216 Мбит/с, из которых аналогичным образом активный видеопоток составит 720 х 480 х 29.97 х 16 = 166 Мбит/с.
Этот поток данных указан для несжатого видео, оцифрованного согласно рекомендации ITU-601 с форматом оцифровки 4:2:2. Если используется формат оцифровки 4:4:4 или 10-битный диапазон уровней квантования, вместо 8-битного (что применяется в вещательном телевидении при обработке и редактировании видео), то видеопоток еще больше увеличивается. Для системы видеонаблюдения использование такого видеопотока будет непрактичным, так как пропускной способности обычных локальных сетей Fast Ethernet не хватит даже для одной телекамеры, не говоря о том, чтобы работать одновременно с несколькими, как это бывает обычно. Поэтому в первую очередь к оцифрованному видео обязательно нужно применить сжатие.
Цифровые системы видеонаблюдения без сжатия изображения были бы невозможны.
Существуют различные стандарты сжатия изображения в вещательном телевидении, для передачи видео в сети Интернет, для записи на DVD и т. д., но в индустрии видеонаблюдения используются http://www.itv.ruITV— генеральный спонсор 2-го издания книги «CCTV. Библия видеонаблюдения» практически все стандарты сжатия, за исключением немногих, что позволяет достичь лучшего компромисса между максимально высоким уровнем сжатия и максимально возможным качеством изображения.

Рис. 9.21. Типичное отображение нескольких телекамер на одном экране, что обычно доступно в режиме наблюдения и просмотра архива.
Это особенно важно, когда на один цифровой видеорегистратор мы записываем несколько телекамер (мультиплексированная запись нескольких телекамер, обычно 16, 18, 24 или 32 телекамеры). Существует большое количество стандартов сжатий и их разновидностей, которые предлагают различные преимущества.
Один кадр несжатого видео может занимать около 1.244 Мбайт для PAL (720x576x3 = 1.2 Мбайт), если мы предполагаем 3 цветовые компоненты и 8-битную оцифровку, а 8 бит равно сжатыми изображениями, размер которых менее 1 байт. В видеонаблюдении мы обычно имеем дело со 100 кбайт, а зачастую даже меньше 10 кбайт.

Рис. 9.22. Графическое представление эффективности алгоритмов сжатия по сравнению с несжатым изображением. Обратите внимание на большую эффективность сжатия MPEG-2 при том же качестве
Когда используется компрессия видеоизображения (вместо компрессии отдельных изображений), то обычно указывается не размер одного кадра, а видеопоток в кбит/с или Мбит/с. Таким образом, видеопоток хорошего качества при сжатии MPEG-2 составит порядка 4 Мбит/с. Поток видео среднего качества для передачи по сети Интернет при сжатии MPEG-4 составит примерно 256–512 кбит/с. Насколько сильно можно сжимать видео, зависит от того, сколькими деталями вы готовы для этого пожертвовать и какое сжатие вы используете. Впрочем, в любом случае без сжатия не обойтись.
Нужно также понимать, что возможна и дополнительная обработка оцифрованного видеосигнала до или после сжатия. В некоторых случаях цифровая обработка заключается в простом масштабировании кадров для размещения их в меньших по размеру окнах (как это происходит в видеоквадраторах), но существуют и более сложные алгоритмы. Например, алгоритмы повышения контраста могут проводить сравнение каждого пиксела с соседними и на основании сравнения изменять значения пиксела. Алгоритмы шумоподавления, детекторов движения и другие также относятся к сфере дополнительной обработки цифрового видеосигнала.
Когда видеосигнал оцифрован и сжат, то его можно сохранить (записать) и передать по локальной сети, по сети Интернет или по другим каналам связи значительно быстрее. Это только немногие преимущества цифрового видео, которые недоступны для аналогового видеосигнала.
Преимущества передачи цифрового видео по сети очевидны: локальные сети уже проложены во многих офисах, учебных заведениях, на фабриках и заводах. Если ответственный IT-персонал дает разрешение на использование местных локальных сетей для передачи видео, то цифровые системы видеонаблюдения можно очень легко и быстро интегрировать с существующими сетями. Кроме того, можно значительно увеличить дистанцию передачи видеосигнала, объединяя несколько соседних локальных сетей в единую структуру. Очевидно, что в эпоху массового развития сети Интернет локальные системы видеонаблюдения могут легко быть объединены в крупномасштабную систему, соединяющую ее локальные компоненты, даже разбросанные по разным континентам, так же легко, как если бы они были расположены через улицы друг от друга.
Читать дальшеИнтервал:
Закладка: