Артур Орд-Хьюм - Вечное движение. История одной навязчивой идеи
- Название:Вечное движение. История одной навязчивой идеи
- Автор:
- Жанр:
- Издательство:Знание
- Год:1980
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Артур Орд-Хьюм - Вечное движение. История одной навязчивой идеи краткое содержание
Идея вечного двигателя на протяжении веков казалась многим реальной, легко осуществимой. Но шло время, а вожделенная идея оставалась все такой же далекой от реализации, как и прежде. Тем не менее безуспешные, казалось бы, усилия изобретателей вечного двигателя сыграли определенную роль к истории научной мысли. Об этом и рассказывает книга, написанная .английским авиатором и инженером.
Для широкого круга читателей.
Вечное движение. История одной навязчивой идеи - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В разработку общепринятого ныне критерия неосуществимости вечного движения, провозглашающего невозможность создания энергии из ничего, внесли свой вклад философы, математики, инженеры. Закон сохранения энергии стал неизбежным препятствием для изобретателей перпетуум мобиле. И все попытки преодолеть это препятствие кончались крахом.
Но вскоре было сформулировано еще общее положение, получившее название второго начала термодинамики. Это начало, говоря несколько упрощенно, гласит, что тепло не может увеличиваться самопроизвольно; иными словами, если более нагретое тело привести в контакт с менее нагретым, то будет наблюдаться выравнивание температур, а не увеличение их разности.
Это явление (выравнивание температур) долгое время не имело никакого теоретического объяснения. Впервые сформулированное немецким физиком Рудольфом Юлиусом Эммануэлем Клаузиусом (1822—1888), второе начало термодинамики носило чисто эмпирический характер. Правда, указывалось на аналогию между изменением температуры контактируемых тел и потоком воды, текущей вниз под действием собственной тяжести, но ситуация осложнялась тем, что не удавалось установить, какие же внешние силы управляют этим тепловым процессом. Поэтому, хотя эксперимент всегда обнаруживал уменьшение температуры, вплоть до последней четверти прошлого столетия высказывались сомнения относительно всеобщности второго начала термодинамики. Более того, некоторые ученые пытались опытным путем доказать, что существуют случаи, нарушающие справедливость этого начала.
В 1875 году вышла в свет знаменитая «Теория теплоты» Максвелла {5} , в которой утверждалось, что характер действия второго начала термодинамики может быть уточнен следующим мысленным экспериментом. Если представить себе некое устройство, которое сортировало бы молекулы по их скорости, то можно было бы без затраты работы и не нарушая закона сохранения энергии нагревать одну половину некоторого объема газа и охлаждать вторую. Результатом этого мысленного эксперимента и будет увеличение тепла в одной части сосуда с газом и уменьшение в другой. Видоизмененное таким образом второе начало термодинамики приобрело вероятностный, а не детерминированный характер.
В конце прошлого столетия физики Больцман {6} и Планк {7} заложили научные основы этого вопроса. Больцман, в частности, показал, что самопроизвольное выравнивание температур двух тел есть результат перехода молекул этих тел из менее вероятного в более вероятное состояние. Гипотетическая передача тепла в направлении от менее нагретого тела к более нагретому в свете этого доказательства возможна, но маловероятна.
Это положение можно проиллюстрировать простым примером. Закон диффузии газов очень близок к закону теплопереноса, поскольку в процессе диффузии молекулы газов стремятся распределиться равномерно. Если на газ не воздействовать извне, то будет наблюдаться тенденция к выравниванию его плотности. Было бы по меньшей мере странно, если бы газ, первоначально обладавший равномерной плотностью, вдруг стал бы скапливаться в одной части сосуда, оставляя при этом незаполненное пространство в другой его части. Аналогичное весьма маловероятное явление происходило бы с теплом, переходящим от менее нагретого к более нагретому телу.
Давайте теперь предположим, что существует крохотный сосуд, вмещающий всего две молекулы, по одной в каждой половине сосуда. Молекулы эти находятся в непрерывном движении, ударяясь о стенки и беспорядочно проскакивая вперед и назад из одной части сосуда в другую. При этом, очевидно, существуют четыре возможных варианта расположения молекул в пространстве:
А — В, В — А, АВ ← 0, 0 → АВ.
В двух вариантах из четырех в одной половине сосуда возникает вакуум. Следовательно, вероятность такого события равна 1/2, и можно ожидать, что половину времени одна часть сосуда будет пустой. С увеличением числа молекул вероятность появления вакуума резко падает. При общем числе молекул, равном n, вероятность того, что половина сосуда окажется пустой, составит (1/2) n-1. Практически число молекул огромно, поэтому вероятность такого события близка к нулю. Так, для реального случая, когда разница давлений в двух половинках одного кубического сантиметра газа не превышает одного процента, вероятность возникновения вакуума в какой-нибудь половине этого кубика ничтожно мала; такое событие может произойти один раз за (10 10) 18лет!
И хотя эти рассуждения выглядят вполне впечатляющими, одно обстоятельство все же необходимо пояснить. Не следует думать, что если возникновение вакуума—событие настолько редкое, то нам действительно придется ждать его появления многие миллионы лет. Вакуум может создаться и через минуту! Более того, вакуум может возникнуть дважды в течение минуты, но на очень короткое время.
Доктор Хейл из бюро стандартов США предположил, что подобная система доказательств могла бы привести нас к аналогичному заключению о возможности самопроизвольного появления заметной разницы температур в некоем объеме газа. Известно, что температура газа определяется скоростью движения его молекул. При температуре, которая считается постоянной, скорости отдельных молекул газа далеко не одинаковы. Однако все они статистически распределены около той средней величины, которая всегда остается неизменной.
Давайте вновь рассмотрим микроскопический сосуд, в котором находится всего четыре молекулы. Пусть на этот раз две молекулы F 1 и F 2 быстрые, а две другие молекулы S 1 и S 2 медленные.
Допуская, что изменений в плотности газа нет, мы получим шесть различных вариантов расположения молекул в сосуде:
Первые четыре варианта—это случаи, когда в обеих половинах сосуда температура газа одинакова, поскольку современные измерительные приборы дают ее усредненное значение. В двух последних вариантах наблюдается разница температур; вероятность их возникновения для четырех молекул равна 1/3.
С увеличением числа молекул вероятность появления сколько-нибудь заметной разницы температур в двух частях нашего гипотетического сосуда резко уменьшается. Следует также иметь в виду, что в любом объеме газа, температуру которого мы в состоянии измерить или проконтролировать, температура каждой отдельной весьма малой его части постоянно колеблется относительно градуировочной кривой прибора, и в целом газ столь же неоднороден по температуре, как и поверхность океана не является абсолютно ровной.
Итак, вероятность появления заметной разницы температур в газе очень мала. Но все же она существует, и, значит, следует не только признать возможность перехода тепла от менее нагретого тела к более нагретому, но и согласиться с тем, что такой переход непрерывно осуществляется, правда, в столь незначительных масштабах, что мы вряд ли сможем его наблюдать. Поэтому, как утверждал немецкий философ Карл Христиан Планк (1819—1880) {8} , существует вероятность, хотя и очень незначительная, что в чайнике, помещенном над огнем, замерзнет вода.
Читать дальшеИнтервал:
Закладка: