Коллектив авторов - История электротехники
- Название:История электротехники
- Автор:
- Жанр:
- Издательство:Издательство МЭИ
- Год:1999
- Город:М.
- ISBN:5-7046-0421-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - История электротехники краткое содержание
Книга посвящена истории электротехнической науки и промышленности как в нашей стране, так и за рубежом. В ней рассмотрены все основные этапы развития электротехники, начиная с ее зарождения и до наших дней. Показана роль отечественных и зарубежных ученых, внесших наибольший вклад в развитие электротехники.
Подробно и конкретно рассмотрены основные достижения различных отраслей электротехники: электроэнергетики; электромеханики; электротехнологии; электрического транспорта; светотехники; электрических материалов и кабелей; промышленной электроники и электроизмерительной техники.
В главе «Персоналии» приведены краткие биографические сведения о крупнейших отечественных и зарубежных ученых и специалистах в области электротехники.
История электротехники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2. Петлевые (или кольцевые) сети с взаимным резервированием линий при однотрансформаторных подстанциях (6)10/0,38 кВ. Резервирование линий делает возможным сократить аварийные перерывы электроснабжения до 1–3 ч; при аварийных повреждениях трансформаторов (это наиболее редкие аварии в РЭС) электроснабжение части потребителей восстанавливается по резервирующим линиям низшего напряжения, а замена поврежденного трансформатора в большинстве случаев может быть осуществлена в течение одной рабочей смены. Этот тип схемы применяется достаточно давно и является наиболее распространенным в электроснабжении жилых районов городов России и ряда европейских стран, сельскохозяйственных производств и крупных населенных пунктов, а также на промышленных предприятиях, если технологические процессы цехов допускают кратковременные перерывы питания (И.С. Бессмертный, В.А. Козлов, Ю.Л. Мукосеев, В.Д. Лордкипанидзе и др.).
3. Разветвленные радиально-магистральные электросети с взаимным автоматизированным резервированием линий и трансформаторов подстанций. При этом типе схем применяются, как правило, кабельные двухцепные линии и двухтрансформаторные понижающие подстанции; при повреждении любого элемента сети напряжением 6–10 кВ потребители испытывают перерывы подачи напряжения только на время отключения повреждения и включения резервного электрооборудования (0,1–2 с); такие сети пригодны для питания наиболее ответственных потребителей (по условиям надежности электроснабжения). Их применение получило распространение в современных условиях при появлении значительной группы промышленных потребителей, многоэтажных жилых и общественных зданий в городах, а также сельскохозяйственных производств, не допускающих перерывов электроснабжения (Ю.Л. Мукосеев, Г.В. Сербиновский, Г.С. Короткое и др.).
С 1940–1950 гг. в системах электроснабжения крупных городов и промышленных предприятий применяются глубокие вводы высокого напряжения — питающие ЛЭП и подстанции напряжением 110 и 220 кВ, подающие мощность до 150 МВт непосредственно в центры зоны крупных нагрузок; аналогичное техническое решение при напряжениях 35 и 110 кВ применяется в сельскохозяйственных районах (Г.В. Сербиновский, В.А. Козлов, А.А. Глазунов, Ю.Л. Мукосеев, И.А. Будзко и др.).
По техническому назначению в структурах схем РЭС следует указать на два основных типа решения задачи передачи и распределения электроэнергии:
1. От источников питания (электростанция, понижающие подстанции 110 и 220 кВ) непосредственно отходят линии распределительных сетей, к которым присоединены потребители электроэнергии. При этом требуется достаточно большое количество присоединений распределительных линий на источниках питания, что увеличивает соответствующие распределительные устройства питающих узлов и обусловливает большую протяженность распределительных линий.
2. К источникам питания присоединяется ограниченное число крупных (по сечениям проводов и кабелей) питающих линий, которые
оканчиваются в распределительных пунктах напряжением 6 и 10 кВ или на распределительных щитах напряжением до 1000 В, к которым присоединяется необходимое количество распределительных линий. В распределительных пунктах и на щитах такого же назначения отсутствует трансформация напряжения и осуществляется только разделение потоков электроэнергии. Экономический смысл такого двухзвенного построения РЭС заключается в снижении количества коммутационного электрооборудования в распределительных устройствах источников питания, а также в уменьшении протяженности линий на участках между источником питания и районом концентрированного расположения потребителей. В РЭС напряжением 6 и 10 кВ длины питающих линий могут составлять 2–5 км, в электросетях напряжением 380/220 В — десятки метров.
В РЭС применяются как воздушные, так и кабельные линии. С начального периода развития РЭС и до настоящего времени в сельской местности применяются воздушные линии, что определяется их значительно меньшей стоимостью по сравнению с кабельными и прохождением трасс по малонаселенной местности. В современных условиях все шире в РЭС 380 В и 10 кВ, в том числе и в районах городов используются изолированные провода, получившие за рубежом массовое применение.
В городах и в промышленности РЭС выполняются кабелями, прокладываемыми в грунте или в специальных каналах, блоках и туннелях. В последнее десятилетие за рубежом прокладываются только относительно дешевые кабели с синтетической изоляцией, что повышает надежность электроснабжения. Такие кабели находят применение и в сельской местности. Здесь широко используется открытая установка трансформаторов (на повышенных фундаментах) и электрооборудования 6 (10) кВ в сочетании с закрытым шкафом распределительного щита 380/220 В. Для создания необходимой безопасности ТП окружается металлическим сетчатым ограждением.
На территориях городов большинства стран первоначальным типом ТП РЭС были отдельно-стоящие строения, внутри которых размещалось электрооборудование, включая трансформаторы. С архитектурно-градостроительных позиций в настоящее время такие решения подвергаются критической переоценке. Им на смену пришли малогабаритные ТП, изготовляемые с применением современной синтетической и элегазовой изоляции, что в 2–3 раза снижает габариты подстанций, а также ТП, встроенных в подземные или первые этажи жилых и общественных зданий. При этом применяются специальные конструктивные решения, обеспечивающие пожаробезопасность и поглощение шумов (Л.Ф. Плетнев, В.А. Козлов, В.Д. Лордкипанидзе и др.). В США и других развитых странах при электроснабжении центров крупных городов применяются погруженные в грунт герметические конструкции ТП с некрупными трансформаторами (25–50 кВ∙А); распределительный щит 380/220 В в таких случаях выносится в ближайшее здание. В промышленном электроснабжении ТП в виде отдельных зданий заменяются индустриально изготавливаемыми комплектными ТП, устанавливаемыми непосредственно в цехах предприятий (КТП) (Ю.Л. Мукосеев, А.А. Федоров и др.).
Отметим основные направления и создателей научно-методических основ прогрессивного развития РЭС в СССР и России. К ним, в первую очередь, относится создание методик расчетов РЭС на основе технических ограничений и требований, обеспечивающих надежное питание потребителей электроэнергии (А.А. Глазунов — 1925–1940 гг., В.Г. Холмский — 1940–1960 гг., Н.А. Мельников, Л.А. Жуков — 1950–1970 гг. и др.). С 30-х годов начинают развиваться методики оптимизации структур, схем, параметров линий и подстанций и режимов РЭС на основе усложняющихся технико-экономических критериев и с применением методов математической оптимизации. Здесь последовательно должны быть отмечены работы по общей теории формирования РЭС: В.М. Хрущева (Харьков), А.А. Глазунова (1935–1960 гг., Москва), В.Г. Холмского (1940–1960 гг., Киев) и др.; по промышленным РЭС: Г.М. Каялова (Новочеркасск), С.Д. Волобринского (Ленинград), А.А. Федорова (Москва), Л.М. Зельцбурга и Г.Я. Вагина (Горький) и др.; по городским РЭС: В.А. Козлова (Ленинград), В.В. Зорина (Киев), В.Д. Лордкипанидзе и А.А. Глазунова (Москва) и др.; по РЭС сельскохозяйственного назначения: И.А. Будзко, Л.М. Левина, Т.Б. Лещинской (Москва) и др.; по вопросам надежности электрических сетей: Ю.Б. Гука (Ленинград), Ю.А. Фокина (Москва) и др.; по оптимизации режимов и качеству напряжения: Л.А. Солдаткиной, Ю.С. Железко (Москва), И.В. Жежеленко (Мариуполь) и др.
Читать дальшеИнтервал:
Закладка: