Евгений Айсберг - Телевидение?.. Это очень просто!
- Название:Телевидение?.. Это очень просто!
- Автор:
- Жанр:
- Издательство:Энергия
- Год:1967
- Город:Ленинград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Айсберг - Телевидение?.. Это очень просто! краткое содержание
Рассказывается о принципах телевидения и о том, как устроен и работает современный телевизор. Рассказ ведется в форме непринужденных бесед.
Книга рассчитана на широкий круг радиолюбителей.
Телевидение?.. Это очень просто! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Л. — Вот вопрос, который раньше мало интересовал изготовителей трубок. Электроны, падающие на экран с большой скоростью…
Н. — Какого порядка?
Л. — Эта скорость зависит от напряжения, приложенного к последнему аноду, и пропорциональна квадратному корню из этого напряжения. Так, при 10 000 в на этом аноде электроны будут иметь скорость около 60 000 км/сек. Но при 20 000 в она едва превзойдет 80 000 км/сек.
Н. — Какой же смысл увеличивать эту скорость?
Л. — Чем сильнее электроны ударяются об экран, тем ярче он светится.
Н. — Вернемся, с твоего разрешения, к электронам, которые ударяются об экран. Что с ними происходит?
Л. — Как камень, с силой брошенный в воду, поднимает фонтан брызг, электроны выбивают другие электроны из люминесцентного слоя. Эти электроны…

Н. — …вторичные.

Л. — Ну да, я вижу, ты ничего не забыл из наших прежних бесед. Эти вторичные электроны медленно и как умеют передвигаются к аноду. По крайней мере, так было в старых трубках. В наше время им облегчают обратный путь, покрывая внутренние стенки колбы между экраном и выводом последнего анода проводящим графитовым слоем. Я должен тебе, кстати, заметить, что вывод последнего анода производится через стекло в конической части колбы (рис. 15).

Рис. 15.Э лектронно-лучевая трубка с фокусировкой посредством электронной линзы. Высокое напряжение на последнем аноде требует хорошей изоляции; поэтому его вывод осуществляется вне цоколя трубки.
1— управляющий электрод; 2— первый анод; 3— второй анод; 4— проводящее покрытие.
Н. — А почему не через штырек цоколя?
Л. — Да потому, что из-за высокого напряжения на этом электроде его следует по возможности отдалить от других электродов.
Н. — Теперь я ясно представляю себе всю цепь. Электроны вылетают из катода, пролетают отверстия управляющего электрода и одного или нескольких анодов и попадают на какую-то точку экрана. Оттуда они движутся вдоль стенок по направлению к последнему аноду и через источник высокого напряжения возвращаются на катод. Я полагаю, что самая трудная часть пути — это та, которая ведет от пятна к краю экрана.
Л. — Верно, потому что люминесцентный слой очень далек от идеального проводника. Но в современных трубках на этот слой часто наносится очень тонкий зеркальный слой алюминия, сквозь который легко проходят электроны, вылетающие из электронной пушки, и который облегчает удаление вторичных электронов. Впрочем, истинная цель алюминиевого слоя — увеличить яркость изображения, отражая по направлению к зрителю ту часть световых лучей, которая без этого безвозвратно терялась бы для него, уходя внутрь трубки.


Н. — Вот мы и владеем электронным карандашом, предназначенным для вычерчивания светящихся изображений на экране. Однако, чтобы рисовать, нужно сделать его подвижным. Как схватить этот невидимый пучок и манипулировать им по своему желанию?
Л. — Когда настоящая пушка выпускает снаряд, он следует по прямолинейной траектории?
Н. — Нет, конечно. Он описывает параболу, так как земное притяжение искривляет его траекторию по направлению к Земле.
Л. — Не видишь ли ты возможности воздействовать на электрон аналогичной силой, способной отклонить его от прямого пути?
Н. — Да, вижу. Можно было бы расположить под пучком положительно заряженный электрод, который притягивал бы электроны так же, как Земля притягивает снаряд. Таким образом, пучок искривился бы книзу.
Л. — Правильно! Можно поступить еще лучше, поместив одновременно над пучком второй, отрицательно заряженный электрод (рис. 16).

Рис. 16. Электростатическое отклонение. В соответствии со знаком напряжения на отклоняющих пластинах пятно отклоняется вниз или вверх.
Н. — Понимаю. Отталкивая электроны пучка, он дополнит действие электрода, помещенного внизу. Но два таких электрода в действительности образуют обкладки конденсатора.

Л. — Конечно. Заметь, впрочем, что на отклоняющие пластины нужно подавать не постоянное напряжение, так как, отклонившись от центра экрана, пятно займет неподвижное положение. Однако не это нам нужно. Что произойдет, если к двум отклоняющим электродам приложить переменное напряжение?
Н. — Во время полупериода, когда верхний электрод становится положительным, а нижний — отрицательным, пучок будет притягиваться вверх (отталкиваясь при этом снизу). Мы увидим, как пятно поднимается. Во время следующего полупериода верхний электрод, становясь отрицательным, его оттолкнет, в то время как он будет притягиваться к нижнему электроду, который станет положительным. Наше пятно, следовательно, переместится вниз.
Л. — Ты видишь, что пятно будет передвигаться туда и обратно вдоль вертикального диаметра экрана. И если частота переменного напряжения, приложенного к отклоняющим пластинам, превышает тридцать герц…
Н. — …глаз воспримет светящуюся вертикальную черту, так как, принимая во внимание инерцию светового ощущения, он не будет различать мгновенных положений, занимаемых пятном.
Л. — Предположим теперь, Незнайкин, что на пути пучка мы помещаем вторую пару отклоняющих пластин, на этот раз расположенных вертикально по обе стороны пучка (рис. 17).

Рис. 17. Электронно-лучевая трубка с электростатическим отклонением.
1— вход видеосигнала; 2— к пластинам вертикального отклонения (кадры); 3— к пластинам горизонтального отклонения (строки).
Читать дальшеИнтервал:
Закладка: