Владимир Поляков - Посвящение в радиоэлектронику
- Название:Посвящение в радиоэлектронику
- Автор:
- Жанр:
- Издательство:Радио и связь
- Год:1988
- Город:Москва
- ISBN:5-256-00077-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Поляков - Посвящение в радиоэлектронику краткое содержание
Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.
Для широкого круга радиолюбителей.
Посвящение в радиоэлектронику - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Изменилось отношение к радиолюбителям и со стороны государственных органов. Об этом свидетельствуют официальные обращения к радиолюбителям с просьбами и предложениями о совместных экспериментах в области распространения коротких волн. Радиолюбителям выдаются специальные диапазоны частот для их экспериментов. А ионосфера продолжает преподносить все новые и новые сюрпризы. Днем связь есть, ночью ее нет, или наоборот… Да что там день или ночь — в течение нескольких часов условия прохождения КВ могут резко изменяться без всяких видимых причин. Необходимы обстоятельные исследования. И такие исследования проводятся — и теоретические, и экспериментальные.
Давайте вкратце познакомимся и с теми и с другими.
Теоретики рассчитали показатель преломления ионосферы для радиоволн — он получился меньше единицы. Напомним, что показатель преломления в вакууме равен единице, а для обычных сред он больше единицы. Кроме того, показатель преломления ионосферы оказался сильно зависящим от частоты колебаний электромагнитной волны — чем больше частота, тем он ближе к единице. Как известно, волны всегда преломляются в сторону среды с большим показателем преломления. Следовательно, и радиоволна, попадая из стратосферы в ионосферу, преломляется и направляется обратно к поверхности Земли.
Способность ионосферы отражать, а точнее говоря, преломлять радиоволны зависит и от угла падения волны на ионизированный слой. Если радиолуч послать вертикально вверх, то он может вернуться обратно, а может, пронизав ионосферу, безвозвратно исчезнуть в просторах космоса. Все зависит от частоты электромагнитных колебаний: если она ниже некоторой критической частоты, то луч возвращается, если выше — то нет. Ученые показали, что критическая частота зависит только от концентрации электронов в слое. Но критическую частоту можно измерять экспериментально, посылая к ионосфере радиосигналы. Таким образом, мы получаем новое средство исследования верхних слоев атмосферы, в частности средство для определения концентрации в них заряженных частиц.
Радиолуч, посланный наклонно, отражается ионосферой лучше. Касательные к горизонту лучи обеспечивают наибольшую дальность связи. Частота колебаний касательного луча, еще отражающегося от ионосферы, выше критической частоты в три-пять раз. Она называется максимальной применимой частотой или, сокращенно, МПЧ. Волны с частотами выше МПЧ, посланные с поверхности Земли, уже ни при каких условиях не могут вернуться обратно на Землю — недостаточно преломляясь в ионосфере, они уходят в космос.
Пути распространения радиоволн.
Пути радиоволн в ионосфере.
Максимально применимую частоту можно рассчитать, зная критическую частоту и высоту слоя.
Теоретики сказали свое слово — дело за инженерами. Для каждого слоя ионосферы желательно знать два параметра — критическую частоту и высоту над поверхностью Земли. Они очень изменчивы и зависят от времени суток, сезона, географического положения места, где производятся измерения, и от многих других причин, не все из которых и к настоящему времени достаточно хорошо изучены.
Первый эксперимент Г. Брейта и М. Туве по активному зондированию ионосферы не забыли — сейчас во всем мире постоянно действуют сотни ионосферных станций, представляющих собой КВ радиолокаторы, «стреляющие» короткими импульсами радиоволн вертикально вверх. Отраженные импульсы принимаются и регистрируются на экране электронно-лучевой трубки (подробнее о ней будет рассказано в гл. 7). Одновременно изменяется частота излучаемых импульсов. Станция устроена так, что на экране регистрируются отраженные сигналы в координатах частота-высота. Полученный график называется ионосферной характеристикой или ионограммой . По нему можно сразу определить и высоты каждого из слоев, и их критические частоты. На рисунке показаны типичные ионосферные характеристики, снятые в наших, средних широтах летом, когда Солнце высоко и интенсивность ионизации верхних слоев ионосферы велика, и зимой — при низком Солнце.
Ионосферные характеристики.
Как видим, критические частоты летом выше, чем зимой. Одна и та же причина — возросший уровень солнечной радиации вызывает летнее повышение температуры тропосферы и критических частот ионосферы.
В ионосфере своя «погода», и, как это не покажется удивительным, ее уже научились предсказывать! Институт земного магнетизма и распространения радиоволн АН СССР (ИЗМИРАН), расположенный под Москвой, публикует прогнозы, так и хочется сказать — погоды. Но не погоды, а прогнозы распространения коротких волн для всей территории Советского Союза на месяц вперед! Учесть надо многое, чтобы составить правильный прогноз. Не только время суток и года, но и фазу одиннадцатилетнего цикла солнечной активности, число пятен на Солнце, возмущения магнитного поля Земли и многое другое. Благодаря ионосферным прогнозам можно рекомендовать оптимальные частоты для радиосвязи в заданное время между любыми заданными пунктами.
Самый простой путь распространения волн, отраженных от ионосферы, — односкачковый. Дальность распространения при этом получается до 4000 км. Более сложный путь распространения — многоскачковый, когда волна несколько раз переотражается ионосферой, затем Землей, еще раз ионосферой, и т. д. Особенно малые потери мощности сигнала получаются при рикошетирующем распространении, когда радиоволны возвращаются на Землю, несколько раз переотразившись от ионосферы. Наиболее благоприятные условия для возникновения рикошетирующих волн возникают в утренние и вечерние часы, когда слои ионосферы наклонны к горизонту. Напомним, что на ночной стороне Земли высота слоев больше, чем на дневной.
Короткие волны могут распространяться на любые расстояния.
На КВ неоднократно наблюдали кругосветное эхо, когда сигнал, посланный с помощью направленной антенны на восток, приходит снова к месту расположения передатчика с запада. Время запаздывания кругосветного эхо составляет около 0,14 с. Полагают, что число отражений волны от ионосферы при кругосветном эхо достигает 12–14. Разговор о «чудесах» коротких волн можно продолжать долго. Вот, к примеру, любопытное явление: «зона молчания», или «мертвая зона». Пусть мы вылетели на самолете (или вышли на корабле, кому как нравится) из города, где работает КВ радиостанция, и во время пути прослушиваем ее работу. Сначала благодаря поверхностной волне мы ее хорошо слышим, но на расстоянии 150…200 км волна уже не способна преодолеть кривизну поверхности, и сигнал радиостанции пропадает. Терпеливо ждем (на корабле терпения нужно больше), и при расстоянии 1500…2000 км сигнал появляется снова! Вокруг радиостанции образовалось как бы кольцо «зоны молчания», где поверхностных волн уже нет, а волны, отраженные от ионосферы, еще не пришли.
Читать дальшеИнтервал:
Закладка: