Владимир Поляков - Посвящение в радиоэлектронику

Тут можно читать онлайн Владимир Поляков - Посвящение в радиоэлектронику - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_tech, издательство Радио и связь, год 1988. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Посвящение в радиоэлектронику
  • Автор:
  • Жанр:
  • Издательство:
    Радио и связь
  • Год:
    1988
  • Город:
    Москва
  • ISBN:
    5-256-00077-2
  • Рейтинг:
    3.18/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Поляков - Посвящение в радиоэлектронику краткое содержание

Посвящение в радиоэлектронику - описание и краткое содержание, автор Владимир Поляков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.

Для широкого круга радиолюбителей.

Посвящение в радиоэлектронику - читать онлайн бесплатно полную версию (весь текст целиком)

Посвящение в радиоэлектронику - читать книгу онлайн бесплатно, автор Владимир Поляков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сглаживающий фильтр.

Аналогичными свойствами обладает и мостовая схема выпрямителя. В ней используются четыре диода, зато нужна только одна вторичная обмотка трансформатора. Ток в нагрузке мостового выпрямителя имеет точно такой же вид, как и у двухполупериодного. Специально для мостовых выпрямителей выпускаются блоки из четырех диодов в одном корпусе.

Мостовой выпрямитель.

Полупроводниковые диоды легки, компактны и отличаются очень высоким КПД. Область их применения обширна — от детектирования слабых сигналов в радиоприемнике до выпрямления тока при мощностях в сотни киловатт в грузовых электровозах. Теперь на вопрос, поставленный в заголовке раздела, мало-мальски сведущие в электронике люди ответят: «Выпрямить переменный ток? Разумеется, нет ничего проще!».

Триод из… полупроводника?

Инженерам, воспитанным на электровакуумной технике, эта мысль казалась нелепой еще в 50-х годах. Ведь триод — это радиолампа, содержащая катод, анод и управляющую сетку. Потенциал сетки управляет анодным током, и благодаря этому эффекту получают усиление сигналов. Вот как это делается: входное напряжение сигнала прикладывают между сеткой и катодом. Для того чтобы случайные электроны, осевшие на сетке, отправлялись обратно к катоду, включают резистор утечки сетки R g. В анодную цепь последовательно с источником питания включают резистор нагрузки R a. Под действием входного напряжения изменяется анодный ток. Каждую лампу характеризуют рядом параметров, в том числе и крутизной характеристики S= ΔI a/ Δu g- величиной, показывающей, на сколько изменится анодный ток при изменении потенциала сетки на 1 В. Принцип «чем больше, тем лучше» оправдывается и здесь. Обычно стремятся получить максимальную крутизну характеристики в рабочей точке, т. е. при заданных напряжениях на электродах. Анодный ток, проходя через резистор нагрузки, создает на нем некоторое падение напряжения. Его постоянная составляющая обычно не используется, а вот изменения, вызванные изменениями анодного тока, служат полезным выходным сигналом U вых= ΔI a· R a. Выразите изменения анодного тока через изменения сеточного напряжения Δu g= U вхи подставьте в последнюю формулу.

У вас получится U вых = S· R a· U вх. Произведение S· R aявляется коэффициентом усиления лампы по напряжению. Хотя мы получили упрощенную формулу, она дает верное представление о значении коэффициента усиления.

Ну вот, мы посмотрели, как действует усилитель электрических сигналов на электровакуумной лампе. Его коэффициент усиления может достигать нескольких десятков, а иногда и сотен раз.

Усилитель на электровакуумной лампе (триоде).

Как же сделать триод из полупроводника? Эту задачу решили в 1948–1949 годах американские ученые Д. Бардин, В. Братгайн и У. Шокли, за что они были удостоены Нобелевской премии в области физики.

Давайте посмотрим, как им удалось сделать транзистор. Объединим два диода, как показано на рисунке. Область р в середине структуры называется базой , одна из n -областей — эмиттером , а другая — коллектором . Из самих названий ясно, что эмиттер должен что-то излучать, или испускать, а коллектор — это «что-то» собирать.

Структура транзистора n-p-nтипа.

Но что можно испускать в полупроводнике? Разумеется, носители заряда — электроны или дырки. Следовательно, на эмиттерный переход надо подать отпирающий потенциал, тогда через этот переход пойдет ток и возникнет движение зарядов. Вот схема включения полупроводникового триода, или транзистора. Транзистор здесь уже изображен так, как его обычно указывают на принципиальных схемах электронных устройств. База ( Б) обозначена черточкой, эмиттер ( Э) — стрелкой, а коллектор ( К) просто наклонной линией, подходящей к базе. Стрелка эмиттера показывает направление тока через эмиттерный переход. Этот ток создается батареей G1. А чтобы он не достигал очень больших значений, ведь сопротивление открытого р - n перехода весьма мало, включен ограничивающий ток резистор R э. Итак, из эмиттера в толщу полупроводника (хотя какая там толща — толщина базы современных транзисторов измеряется микрометрами!) направляется поток электронов. Все было бы хорошо, если бы электроны, собравшиеся было осесть на базе, не попадали в сильное электрическое поле коллектора, который находится очень близко от эмиттера. На коллектор от батареи G2подано сравнительно большое напряжение (несколько вольт или даже десятков вольт). Оно приложено в направлении, обратном для коллекторного р - n перехода, поэтому собственного тока через коллекторный переход практически нет. Но есть эмиттерный ток, и электроны, попадая в поле коллектора, направляются к нему и создают ток в коллекторной цепи. У современных транзисторов коллектор «перехватывает» более 99 % всех электронов, излучаемых эмиттером.

Следовательно, «коэффициент перехвата», равный отношению коллекторного тока к эмиттерному, h 21б= 0,99 или даже больше. Он называется коэффициентом передачи тока в схеме с общей базой или коэффициентом передачи тока эмиттера . Действительно, в данной схеме включения базовый электрод является общим и для эмиттерной, и для коллекторной цепей. В саму же базу попадает всего 1 — h 21бт. е. менее 1 % тока эмиттера. Но вот что важно: и коллекторный, и базовый токи прямо пропорциональны току эмиттера, и если последний прекратится, то прекратится и коллекторный ток. Значит, эмиттерный ток управляет коллекторным! Но где же усиление? В этой схеме усиления по току действительно нет. Тем не менее можно получить усиление по напряжению и по мощности, если в цепь коллектора включить не измерительный прибор (миллиамперметр), как показано на рисунке, а резистор нагрузки с достаточно большим сопротивлением. Тогда изменения коллекторного тока вызовут изменения падения напряжения на нагрузке тем большие, чем больше ее сопротивление.

Включение транзистора по схеме с общей базой.

Но существует и другая, наиболее распространенная схема включения транзистора — с общим эмиттером. Здесь отпирающее напряжение подается на базу. Переход база — эмиттер, как и прежде, отпирается, и эмиттер испускает носители заряда — электроны. Если обозначить ток эмиттера i это ток базы составит (1 — h 21б)/ i э, а ток коллектора — h 21бi э.

Включение по схеме с общим эмиттером.

Найдем отношение тока коллектора к току базы: i k/ i б= h 21б(1 — h 21б). Его значение около 100. Оно называется коэффициентом передачи тока в схеме с общим эмиттером h 21эили коэффициентом передачи тока базы . Ток коллектора непосредственно зависит от тока базы: чем больше i б, тем больше и i k. Тут опять происходит управление большим током коллектора с помощью малого тока базы. Если в цепь базы включить источник сигнала, то такой же сигнал, но уже значительно усиленный, выделится и на резисторе нагрузки R нв коллекторной цепи. Именно так и устроены простейшие транзисторные усилители сигналов. Никаких накаленных катодов, никаких баллонов, откачанных до глубокого вакуума — транзистор представляет собой крошечный элемент с тремя проволочками-выводами. И напряжения питания требуются небольшие — всего несколько вольт. По массе, габаритным размерам и потребляемой мощности транзистор не идет ни в какое сравнение со своей предшественницей — электронной лампой.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Поляков читать все книги автора по порядку

Владимир Поляков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Посвящение в радиоэлектронику отзывы


Отзывы читателей о книге Посвящение в радиоэлектронику, автор: Владимир Поляков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x