Владимир Поляков - Посвящение в радиоэлектронику
- Название:Посвящение в радиоэлектронику
- Автор:
- Жанр:
- Издательство:Радио и связь
- Год:1988
- Город:Москва
- ISBN:5-256-00077-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Поляков - Посвящение в радиоэлектронику краткое содержание
Популярно рассказано об основных достижениях радиоэлектроники — от радиовещания и телевидения до сложных вычислительных комплексов и систем. На многочисленных примерах показана все возрастающая значимость радиоэлектроники в современном мире. Даны сведения о физических основах, принципах действия и устройстве радиоэлектронной аппаратуры и ее элементов.
Для широкого круга радиолюбителей.
Посвящение в радиоэлектронику - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Различают два режима работы фотодиодов: собственно фотодиодный и фотовольтаический. В фотодиодном режиме на p-n переход подастся запирающее напряжение. В темноте ток через закрытый переход оказывается весьма малым. Но стоит осветить переход как ток резко возрастет. Разумеется, за счет «выбитых» квантами света электронов и образовавшихся на их месте «дырок».
В фотовольтаическом режиме на p-n переход не подают напряжения — оно само возникает под действием света. Происходит это оттого, что кванты света сообщают носителям — заряда дополнительную энергию, помогающую им преодолевать потенциальный барьер p-n перехода. «Информационные» фотоприемники, служащие для регистрации оптических сигналов, чаще всего работают в фотодиодном режиме, а солнечные батареи в фотовольтаическом режиме, развивая напряжение в несколько десятых долей вольта на каждый элемент.
Технология изготовления фотодиодов почти не отличается от технологии изготовления обычных полупроводниковых приборов. На кристалле полупроводника методом эпитаксиального выращивания или ионною легирования создают слои с p и n проводимостями. Один вывод образует контакт с подложкой, а другой — тонкий, прозрачный для света слой металла. Параметры фотодиодов совершенствуются в двух главных направлениях:- повышение чувствительности и уменьшение инерционности. С этой целью предложен ряд новых структур: четырехслойные с гетеропереходом, фотодиоды с барьером Шотки (контакт металл-полупроводник), отличающиеся особенно высоким быстродействием, кремниевые p-i-n диоды, которые все более вытесняют прибор с p-n переходом. Структура p-i-n содержит слои полупроводника с p и n проводимостями, разделенные очень тонким i -слоем окиси кремния — изолятором. Обратный ток перехода в p-i-n структуре чрезвычайно мал, что увеличивает чувствительность к слабым световым потокам. Энергия носителей заряда, возбужденных квантами падающего света, оказывается вполне достаточной, чтобы преодолеть тонкий слой изолятора и создать фототок.

Кремниевый p-i-nфотодиод.
Фототранзистор в отличие от фотодиода обладает внутренним усилением и благодаря этому — повышенной чувствительностью. Фототранзисторы с p-n переходами изготавливаются по стандартной планарной технологии кремниевых интегральных схем. От обычного n-p-n транзистора фототранзистор отличается только тем, что у него в области эмиттерного перехода имеется прозрачное окно, пройдя которое свет попадает в базу. Образовавшиеся благодаря действию квантов света носители заряда создают ток базы. Ток коллектора в соответствии с принципом работы транзистора получается в h 21Эраз больше. Типичное значение коэффициента передачи тока кремниевого транзистора составляет 50…200.
Из других типов фотоприемников следует упомянуть фоторезисторы. Как правило, они также изготавливаются из полупроводника, но p-n переходов не имеют, т. е. ведут себя как обычные омические сопротивления. Темновое сопротивление фоторезистора обычно велико и может достигать нескольких мегаом. Под действием света в толще полупроводника появляются свободные носители заряда, резко снижающие сопротивление фоторезистора. Если в вашем подъезде установлен автомат включения лестничного освещения с наступлением темного времени суток, то можете быть уверены, что датчиком служит фоторезистор, обычно типа ФСК-1 или ФСК-2.

Фототранзистор.
Большие трудности возникают при создании фотоприемников для ИК области спектра. Дело в том, что для «вырывания» электрона из атома полупроводника при фотоэффекте квант света должен совершить определенную работу, называемую работой выхода. Следовательно, энергия кванта должна быть больше работы выхода для данного вещества. Но энергия квантов уменьшается с увеличением длины волны. Кремниевые фотоприемники эффективно работают только в видимой части спектра до длин волн 0,8…0,9 мкм. Германий, а также тройные соединения, такие как InGaAs, GaAsSb, позволяют продвинуться в длинноволновую область до 2… 3 мкм. А для приема в дальней ИК области (10…12 мкм) необходимо использовать уже другие физические принципы. Обнадеживающие результаты дают пироэлектрические приемники. В них используются вещества, создающие электрический заряд при воздействии тепла. Пироприемник обычно содержит и усилитель на полевом транзисторе с изолированным затвором, имеющий очень высокое входное сопротивление (гигаомы), согласующееся с высоким сопротивлением пироэлемента.
Рассмотрев способы генерации и приема оптического излучения, перейдем к устройствам, в которых используются описанные приборы.
Ассортимент подобных устройств огромен. Не будем заниматься их перечислением, а рассмотрим некоторые из них.
Лидар, или оптический локатор с лазером в качестве передатчика, внешне напоминает обыкновенный спаренный телескоп. Принцип действия его точно такой же, как и у известного нам радиолокатора. Импульсы мощного лазера, дополнительно сфокусированные оптической системой одного из телескопов, посылаются в направлении исследуемого объекта. Отраженный или рассеянный сигнал достигает приемной трубы-телескопа и воздействует на фотоприемник. По задержке отраженного импульса определяют расстояние до объекта, а по положению телескопов — его угловые координаты. Точность их измерения лидером намного превосходит точность любого радиолокатора. Так, например, угловые координаты можно определить с точностью до угловой секунды, а дальность — до нескольких десятков сантиметров. Что это значит? Можно, например, на расстоянии 200 км следить за стыковкой двух космических аппаратов, сблизившихся до расстояния в несколько метров.

Оптические системы — антенны.
Следующий прибор произвел подлинную революцию в геодезии и картографии. Назначение его ясно из названия — светодальномер. Прежде чем составить подробную и точную карту местности, необходимо найти и обозначить пункты, координаты которых были бы хорошо известны. Относительно их можно определять координаты и других пунктов: улиц, домов, холмов, оврагов, рек и озер. Вы неоднократно видели на возвышенных местах ажурные деревянные или металлические башни — геодезические сигналы. Они cтроятся над опорными пунктами геодезической сети. С одного сигнала обязательно видно два-три других. Ранее сигналы называли триангуляционными вышками, поскольку вся сеть строилась с помощью метода триангуляции [4] Триангуляция — метод определения положения геодезических пунктов путем построения на местности систем смежно расположенных треугольников (вершинами их являются определяемые точки), в которых измеряют углы и длину сторон.
. Между двумя анналами как можно точнее измерялось расстояние, например, мерной лептой или проволокой. Это расстояние называется базисом . Затем с концов базиса определяли направление на третий пункт. Рассчитав все стороны получившегося треугольника по известной одной стороне и двум углам (классическая задача!), определяли положение третьего пункта, затем четвертого и т. д. Триангуляционная сеть уходила за горизонт, но точность угловых измерений теодолитами весьма высока, и координаты пунктов определялись довольно точно. Тем не менее ошибка накапливалась и накапливалась по мере удаления от базиса. А насколько трудоемкой была эта работа для геодезистов, вы сами теперь можете представить! Долгие месяцы вручную обрабатывались колонки многозначных цифр, измеренных в полевых экспедициях. Радиоэлектроника упростила геодезические работы. Я уж не буду говорить, что многозначные числа обрабатывает теперь ЭВМ — это очевидно. Но и углы в триангуляционной сети теперь никто не измеряет. Измеряют длину сторон с помощью портативных и очень полезных приборов — радио- и светодальномеров. Светодальномер обеспечивает большую точность. Он позволяет измерять расстояние в 10 км с ошибкой в один сантиметр! Зато радиодальномер действует в любую погоду: туман, плохая видимость ему не помеха.
Интервал:
Закладка: