Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Название:Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2019
- Город:СПб.
- ISBN:978-5-4461-1254-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Мартин Форд - Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей краткое содержание
Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было.
Вас ждут блестящие встречи с такими признанными авторитетами, как Р. Курцвейл, Д. Хассабис, Дж. Хинтон, Р. Брукс и многими другими. В формате PDF A4 сохранен издательский макет книги.
Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Следующим этапом стало написание коммерческих видеоигр. Одна из ключевых тем многих моих игр, от Theme Park (1994) до Republic: The Revolution (2003), – это симуляция. Игрокам предоставляется изолированная среда с персонажами, созданными на базе ИИ, реагирующими на различные действия.
Я считаю, что игры тренируют ум. Например, шахматы было бы полезно ввести в школьную программу, потому что они учат решать проблемы, планировать и в принципе прививают навыки, которые могут пригодиться в других областях. Возможно, все эти вещи я понимал подсознательно, когда основал DeepMind и начал использовать игры как среду обучения для ИИ-систем.
Перед этим я прослушал курс computer science в Кембриджском университете. Тогда, в начале 2000-х гг., мне не хватало идей для начала работы над сильным ИИ. В результате я получил степень доктора нейробиологии, многое узнал о памяти и воображении – вещах, которые захотел перенести в машину.
М. Ф.: То есть вас с самого начала интересовал сильный ИИ?
Д. Х.: Именно так. Еще подростком я знал, чем хочу заниматься. Все началось с моего первого компьютера. Для меня это был волшебный инструмент: большинство машин дополняют физические возможности человека, а эта машина расширяла умственные способности.
Меня до сих пор восхищает, что для решения научной задачи можно написать программу, запустить ее и уйти спать. А утром получить готовый ответ. Естественно возникают мысли о следующем шаге: сделать машины, которые сами предлагают решения проблем.
М. Ф.: Компаний, которые специализируются именно на сильном ИИ, немного. Потому что нет бизнес-модели, позволяющей быстро получать доход. Как с этим справилась DeepMind?
Д. Х.: Мы с самого начала были компанией, нацеленной на разработку сильного ИИ, что осложнило поиск инвесторов. Наш тезис состоял в том, что технология общего назначения найдет сотни самых удивительных применений. Поэтому необходимость сначала собрать группу талантливых исследователей выглядела оправданной. В мире не так много людей, которые могли бы внести свой вклад в такую работу. В 2009–2010 гг., когда мы только начинали, можно было насчитать менее 100 человек. Вопрос был в том, сможем ли мы продемонстрировать четкий и измеримый прогресс.
В 2009 г. никакой шумихи вокруг ИИ не было. Более того, за последние 30 лет на эту тему было дано столько обещаний, которые окончились ничем, что получить первоначальное финансирование было невероятно трудно. Но у нас были сильные аргументы. Во-первых, мы опирались на новые достижения в нейробиологии и понимании мозга. Во-вторых, собирались делать обучающиеся, а не традиционные экспертные системы. В-третьих, для ускорения разработки должно было применяться эталонное тестирование и симуляции. Мы смогли объяснить, почему ИИ не улучшался в предыдущие годы. Кроме того, наши методы работы требовали больших вычислительных мощностей, которые как раз в это время стали доступными.
В конце концов, нам удалось убедить достаточно людей, но направление, которое мы собирались разрабатывать, на тот момент было немодным. Его не одобряли даже в научных кругах, занимающихся ИИ, и вообще переименовали в «машинное обучение». Удивительно, как быстро все это изменилось.
М. Ф.: В итоге вы обеспечили финансирование и независимость компании. Почему вы продали ее Google?
Д. Х.: Мы не планировали продавать компанию, отчасти потому, что без продукта она не представляла ценности ни для одного крупного корпоративного бизнеса. У нас была бизнес-модель, которую мы не успели реализовать, и система компьютерного самообучения DQN (deep Q-network). К 2013 г. завершилась наша работа в Atari. Ларри Пейдж услышал о нас от одного инвестора, и мы неожиданно получили электронное письмо от вице-президента научного подразделения компании Google Алана Юстаса.
До момента продажи прошло некоторое время, потому что мне нужно было многое взвесить. Но в итоге я убедился, что ресурсы Google – их вычислительные мощности и возможность создать большую команду – ускорят выполнение нашей миссии по разработке сильного ИИ. Дело было не в деньгах: инвесторы были готовы увеличить финансирование.
Ларри и другие сотрудники Google также увлечены ИИ и предоставили нам автономию в том, что связано с направлениями исследований и с нашей культурой; они согласились создать совет по этике, касающийся наших технологий. Кроме того, мы смогли остаться в Лондоне, что для меня было очень важно.
М. Ф.: Почему вы предпочли Лондон Кремниевой долине? Это связано с вами лично или с компанией?
Д. Х.: И со мной, и с компанией. Я родился и вырос в Лондоне и люблю этот город. Соседство Кембриджа и Оксфорда я считал конкурентным преимуществом. Причем тогда в Европе не было ни одной ставящей по-настоящему масштабные цели исследовательской компании, что давало нам высокие перспективы найма. К 2018 г. в Европе появилось несколько компаний, но мы были первыми, кто провел глубокие исследования в области ИИ. И мне кажется, что в таком деле должны принимать участие представители разных культур.
М. Ф.: Вы открываете лаборатории в европейских городах?
Д. Х.: Мы создали небольшую лабораторию в Париже, две лаборатории в Канаде – в Альберте и Монреале. После объединения с Google у нас появился офис в городе Маунтин-Вью, штат Калифорния.
М. Ф.: Насколько близко вы сотрудничаете с остальными ИИ-командами в Google?
Д. Х.: Над различными аспектами машинного обучения и ИИ в Google работают тысячи людей, которые занимаются как прикладными вопросами, так и исследованиями. Разумеется, все руководители групп знакомы друг с другом, и когда возникает такая необходимость, организуется сотрудничество. В отличие от остальных групп, DeepMind занимается исключительно сильным ИИ. У нас разработан долгосрочный план, базирующийся на данных о сути интеллекта и средствах его достижения, которые предоставляют нейробиологи.
М. Ф.: О вашей программе AlphaGo снят документальный фильм [14] https://www.alphagomovie.com/
. Думаю, она дает решения всем играм для двух игроков с открытой информацией. Планируете ли вы перейти к играм со скрытой информацией?
Д. Х.: Скоро выходит новая, улучшенная версия программы AlphaZero. Действительно, можно сказать, что мы разработали универсальное решение для игр типа шахмат, го, сеги и т. п. И пора делать следующий шаг. Сейчас мы работаем над стратегической игрой для ПК StarCraft со сложным игровым пространством. Там нет статичного набора фигур, как в шахматах, потому что игроки строят свои юниты. Кроме того, присутствует скрытая информация, так называемый «туман войны». Игрок не видит фрагментов экрана, пока не исследует эту область.
Читать дальшеИнтервал:
Закладка: