Кэти Мак - Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики
- Название:Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2021
- Город:Москва
- ISBN:978-5-04-117189-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кэти Мак - Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики краткое содержание
В формате PDF A4 сохранен издательский макет.
Конец всего. 5 сценариев гибели Вселенной с точки зрения астрофизики - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Чтобы измерить параметр замедления, необходимо как-то выяснить скорость расширения Вселенной в прошлом и сравнить с тем, как быстро она расширяется сейчас. К счастью, эта задача вполне решаема благодаря тому, что мы можем непосредственно видеть прошлое, глядя на отдаленные объекты, а также наблюдать за объектами, которые удаляются от нас прямо сейчас. Все, что нам нужно сделать, – это посмотреть на то, что находится рядом, и на то, что расположено очень далеко, определить скорость удаления этих объектов от нас, и произвести небольшие расчеты. Все просто!
На практике, правда, все совсем не просто, поскольку помимо красного смещения необходимо выяснить еще и расстояния до объектов глубокого космоса, измерить которые очень трудно. Однако достаточно знать о том, что это в принципе возможно. К счастью, астрономы обладают обширным и разнообразным инструментарием для проведения подобных измерений, и в данном случае им на помощь приходят катастрофические термоядерные взрывы далеких звезд.
Дело в том, что свойства взрывов некоторых типов сверхновых настолько предсказуемы, что их можно использовать в качестве стандартных измерителей для определения расстояния. Речь идет о гибели белых карликов, до взрыва представляющих собой медленно остывающие звездные остатки, в которые превратится и наше Солнце после того, как преодолеет стадию красного гиганта, уничтожив ближайшие планеты. Когда масса белого карлика достигает критической отметки (за счет поглощения вещества звезды-компаньона или слияния с другим белым карликом) [36] Как ни странно, мы до сих пор точно не знаем, какой из этих механизмов является основным. Мы просто наблюдаем взрыв звезды и знаем, что в этом замешан, по крайней мере, один белый карлик.
, он взрывается. Этот взрыв называется вспышкой сверхновой типа Ia и имеет характерную кривую блеска и спектр, по которым мы можем довольно уверенно отличить его от других светящихся космических объектов. В принципе, хорошо понимая физику подобного взрыва, мы знаем, насколько ярким он должен выглядеть вблизи, и, учитывая то, каким ярким он нам кажется, мы можем выяснить расстояние, преодоленное светом. (Мы называем такой взрыв «стандартной свечой», поскольку он представляет собой своеобразную лампочку, мощность которой нам точно известна. На основании этой информации мы можем определить, где находится данная лампочка, учитывая то, что ее яркость обратно пропорциональна квадрату расстояния. Только мы говорим «свеча», а не «лампочка», поскольку это звучит более поэтично.)
После выяснения расстояния до сверхновой необходимо определить скорость ее удаления. Для этого можно использовать красное смещение в спектре галактики, в которой взорвалась звезда, говорящее о том, насколько быстро в этой точке происходит космическое расширение. Используйте полученное расстояние и скорость света, чтобы выяснить, как давно все это произошло, и вы получите значение скорости расширения в прошлом.
В 1998 году, всего через несколько лет после публикации в журнале Discover статьи о возрасте космоса, две независимые исследовательские группы, наблюдавшие за далекими сверхновыми, пришли к одинаковому и совершенно невероятному выводу о том, что параметр замедления процесса расширения Вселенной является отрицательным. Из этого следует, что процесс расширения не замедляется, а ускоряется.
Геометрия космоса
Если бы космос вел себя хорошо, описать базовую физику расширения Вселенной было бы так же легко, как и процесс подбрасывания мяча, рассмотренный в предыдущей главе. Если бросить мяч слишком медленно, он поднимется в воздух, остановится и упадет. Этот вариант соответствует Вселенной, которая содержит достаточное количество вещества (или отличается относительно слабым начальным импульсом Большого взрыва) для того, чтобы гравитация победила и обеспечила сжатие пространства. Если бросить мяч нечеловечески быстро, он может преодолеть силу земного притяжения и отправиться в бесконечное путешествие по космосу с постоянно замедляющейся скоростью. Этот вариант соответствует Вселенной, в которой наблюдается идеальный баланс между расширением и гравитацией. Если бросить мяч еще быстрее, его скорость будет приближаться к некой постоянной величине по мере уменьшения влияния земного притяжения. Этот вариант соответствует Вселенной, которая расширяется вечно, поскольку количество содержащегося в ней вещества недостаточно для того, чтобы повернуть процесс расширения вспять и даже просто его замедлить.
Каждый из этих возможных типов Вселенных имеет название и определенную геометрию. Речь в данном случае идет не о внешней форме Вселенной, вроде сферы, куба или чего-то еще, а о свойстве, определяющем поведение гигантских лазерных лучей в космическом пространстве. Вселенную, обреченную на Большое сжатие, называют «замкнутой», поскольку в ней два параллельных луча лазерной пушки в итоге сойдутся, подобно линиям долготы на глобусе. Дело в том, что замкнутая Вселенная содержит в себе так много материи, что все пространство искривлено внутрь. Идеально сбалансированная Вселенная является «плоской», потому что в ней лучи всегда будут оставаться параллельными, подобно параллельным линиям на плоском листе бумаги. Вселенная, в которой расширение преобладает над гравитацией, называется «открытой», и в ней, как вы, вероятно, уже догадались, два лазерных луча со временем будут расходиться. Двумерным аналогом в данном случае является поверхность седла: попробуйте нарисовать параллельные линии на седле (если седла под рукой нет, можете использовать чипсы Pringles), и вы увидите, что они расходятся. Эти формы определяют «крупномасштабную кривизну» Вселенной – степень искривления всего пространства, обусловленного содержащейся в нем материей и энергией.
Объединяет все эти варианты, во-первых, то, что они имеют смысл с точки зрения физики и хорошо работают с эйнштейновскими уравнениями гравитационного поля. Во-вторых, все они предполагают замедление процесса расширения. Во времена проведения измерений с использованием сверхновых не существовало никакого разумного физического механизма, объясняющего ускорение процесса расширения Вселенной. Это было столь же странно, как если бы мяч, подброшенный в воздух, немного замедлился, а затем внезапно рванул в космос без всякой причины. А теперь представьте такое же чудо, только в масштабе всей Вселенной.
Результаты измерений были многократно перепроверены, однако всякий раз физики приходили к одному и тому же выводу: процесс расширения пространства ускоряется.

Это были отчаянные времена, которые требовали принятия отчаянных мер. Настолько отчаянных, что астрономам пришлось допустить существование обширного космического энергетического поля, наделяющего пустое пространство силой отталкивания, действующей во всех направлениях. Это не обнаруженное ранее свойство пространства-времени, заставляющее Вселенную вечно расширяться, черпая силу из неистощимого источника энергии, связано с так называемой космологической постоянной.
Читать дальшеИнтервал:
Закладка: