Ольга Шестова - 30 Нобелевских премий: Открытия, изменившие медицину [litres]

Тут можно читать онлайн Ольга Шестова - 30 Нобелевских премий: Открытия, изменившие медицину [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Альпина, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ольга Шестова - 30 Нобелевских премий: Открытия, изменившие медицину [litres] краткое содержание

30 Нобелевских премий: Открытия, изменившие медицину [litres] - описание и краткое содержание, автор Ольга Шестова, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Самая известная и почетная в мире премия – Нобелевская – ежегодно присуждается за выдающиеся научные исследования, революционные изобретения, вклад в культуру или развитие общества. В этой книге речь пойдет о лауреатах премии по физиологии или медицине. На момент написания книги вручено 210 премий 219 лауреатам. Из них мы отобрали 30 – тех, чьи работы широко используются, значение которых известно каждому, а суть понятна любому человеку без специального образования – небезразличному к медицине и собственному здоровью.
Открытия объединены по темам и собраны в шести главах, посвященных физиологии, генетике, патогенам, медицинским методам и фармакологии. Чтение можно начать с любой главы – с той темы, которая вам кажется самой интересной.

30 Нобелевских премий: Открытия, изменившие медицину [litres] - читать онлайн бесплатно ознакомительный отрывок

30 Нобелевских премий: Открытия, изменившие медицину [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ольга Шестова
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сотни генов в нашем геноме кодируют небольшие молекулы РНК, называемые микроРНК. Они содержат фрагменты кода других генов. Такая микроРНК может образовывать двухцепочечную структуру и активировать механизмы интерференции РНК для блокирования синтеза соответствующего белка. Теперь мы понимаем, что генетическая регуляция микроРНК играет важную роль в развитии организма, для здоровья которого крайне важно, чтобы в нужное время синтезировались нужные белки.

РНК-интерференция открывает огромные возможности для использования в генной инженерии. Были разработаны специальные двухцепочечные молекулы РНК для искусственного подавления определенных генов у людей, животных или растений. Такие молекулы РНК вводятся в клетку и так же, как в природе, активируют механизм РНК-интерференции для разрушения мРНК с идентичным кодом.

Этот метод уже стал важным инструментом исследователей в биологии и биомедицине. В будущем ожидается, что он будет использоваться во многих областях, включая клиническую медицину и сельское хозяйство. Например, во время опытов с животными было показано, что гены, вызывающие высокий уровень холестерина в крови, можно искусственно подавить, если ввести интерферирующую РНК. В настоящее время ученые разрабатывают планы по лечению с помощью РНК-интерференции вирусных инфекций, сердечно-сосудистых заболеваний, рака, эндокринных расстройств и так далее.

Теломера, преодолевшая предел Хейфлика

Элизабет Блэкберн

Джек Шостак

Кэрол Грейдер

В 2009-м Нобелевскую премию по физиологии и медицине присудили трем ученым, которые экспериментальным путем смогли решить фундаментальную задачу биологии. Вот ее суть: как предотвратить укорочение хромосом при каждом последующем делении клеток, как копировать клетки неизмененными и таким образом продлевать жизнь организма и отодвигать старение. Американские цитогенетики Элизабет Блэкберн, Джек Шостак, а также биолог Кэрол Грейдер продемонстрировали ее решение: оно находится в концевых участках хромосом – теломерах. Ученые выделили фермент теломеразу, который препятствует укорочению хромосом.

Когда один из авторов этой книги еще училась на биологическом факультете МГУ, студентов только начинали знакомить с гипотезой советского ученого Алексея Оловникова. Гипотеза касалась участия теломер в механизме, обуславливающем конечное число делений клетки. Тогда было известно, что концевые участки хромосом представляют собой несколько сотен или тысяч одинаковых триплетов – а это и есть теломеры. Триплет – это последовательность из трех оснований, кодирующая одну аминокислоту, из которой в дальнейшем строятся белки. А теломеры не кодируют никаких белков, зачем они тогда – тем более в таком количестве? И почему это количество сокращается с каждым делением клетки?

Советский ученый Алексей Матвеевич Оловников в 1971 году предположил, что укорочение теломер – это и есть механизм, обуславливающий конечное число делений клетки (так называемый предел Хейфлика). В 1992 году было обнаружено, что дети с прогерией, умирающие от «старости» к 13 годам, просто уже рождаются с короткими теломерами. Так была обнаружена прямая связь между длиной теломер и старением.

Несмотря на очевидную корреляцию между длиной теломер и «возрастом» клеток, вопрос о причинно-следственной связи оставался открытым до 1999 года. Тогда в лаборатории удалось показать, что удлинение теломер останавливает старение – и клеток, и человеческих тканей. Осталось решить, как удлинить теломеры и остановить старение клетки, а вместе с ней и всего организма. В 2009 году Джеку Шостаку, Кэрол Грейдер и Элизабет Блэкберн вручили Нобелевскую премию по медицине и физиологии «за открытие того, как теломеры и фермент теломераза защищают хромосомы». Алексей Оловников в число нобелевских лауреатов не вошел, хотя именно его блестящая гипотеза легла в основу исследования, и это было признано биологическим и медицинским сообществом почти единогласно. Например, об этом говорит профессор Майкл Фоссел своей книге «Теломераза. Как сохранить молодость, укрепить здоровье и увеличить продолжительность жизни».

Вся наследственная информация, наш геном, хранится в хромосомах в молекулах ДНК. Уже в 1930 году Герман Мёллер (Нобелевская премия 1946 года) и Барбара Мак-Клинток (Нобелевская премия 1983 года) сделали такое предположение: структуры на концах хромосом, теломеры, могут играть защитную роль. Но как именно они работают – оставалось загадкой.

Разгадка забрезжила, когда ученые начали понимать, как именно происходит копирование генов. Когда клетка готовится к митозу, молекулы ДНК должны удвоиться, им помогает в этом фермент ДНК-полимераза, которая «садится» на одну из копируемых нитей на самом ее конце. Оловников рассказывал, что эта идея пришла ему в голову в метро, где он наблюдал за ремонтом путей. Рабочая вагонетка доходила до конца рельса и останавливалась, в результате рельс под ней оказывался не замененным. Такой же процесс происходит на самом конце ДНК, на котором «крепится» фермент. Он оказывается нескопированным, и при каждом последующем делении хромосома сокращается на эту величину недорепликации. Это происходит во многих клетках, но не во всех. Почему же бывают исключения?

Хромосому защищает концевой участок с повторяющимися основаниями ТТАГГГ, теломера. Эта последовательность, в отличие от триплетов, не кодирует белков. В каждой хромосоме таких одинаковых последовательностей несколько десятков. Так что, хоть при каждом делении участков теломер становится на одну меньше, клетка может совершать определенное число делений, почти не замечая такого убывания. Однако, когда теломер не остается, клетка перестает делиться, стареет и совершает апоптоз – самоуничтожение. Большинство нормальных клеток не делятся часто, поэтому их хромосомы не подвергаются риску сокращения. Многие ученые полагают, что укорочение теломер может быть причиной старения – как отдельных клеток, так и организма в целом. В отличие от нормальных клеток, злокачественно перерожденные, раковые клетки обладают способностью к неограниченному делению – и все же сохраняют свои теломеры. Было высказано предположение, что существует особый механизм или фермент, восстанавливающий длину теломер, в результате которого клетки способны практически к неограниченному делению.

Под Рождество 1984 года будущий нобелевский лауреат Кэрол Грейдер обнаружила - фото 28

Под Рождество 1984 года будущий нобелевский лауреат Кэрол Грейдер обнаружила признаки ферментативной активности в клеточном экстракте, который она исследовала. Так был открыт фермент теломераза. Его функция состоит в том, чтобы достраивать теломеру ДНК и обеспечивать таким образом платформу, которая позволяет ДНК-полимеразе скопировать всю длину хромосомы, не пропуская ее самую концевую часть. Исследователи изучили этот фермент: он оказался обратной транскриптазой; с ней связана особая молекула РНК, которая используется в качестве матрицы для обратной транскрипции во время удлинения теломер. Злокачественные клетки избегают клеточного старения и способны к неограниченной пролиферации (делению), так как в них увеличена активность теломеразы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ольга Шестова читать все книги автора по порядку

Ольга Шестова - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




30 Нобелевских премий: Открытия, изменившие медицину [litres] отзывы


Отзывы читателей о книге 30 Нобелевских премий: Открытия, изменившие медицину [litres], автор: Ольга Шестова. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x