Эрик Дрекслер - Безграничное будущее: нанотехнологическая революция

Тут можно читать онлайн Эрик Дрекслер - Безграничное будущее: нанотехнологическая революция - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эрик Дрекслер - Безграничное будущее: нанотехнологическая революция краткое содержание

Безграничное будущее: нанотехнологическая революция - описание и краткое содержание, автор Эрик Дрекслер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Дрекслер — известный американский учёный, «отец нанотехнологий», инженер, известный популяризатор нанотехнологий. Автор концепции нанотехнологического механосинтеза, первый теоретик создания молекулярных нанороботов, концепции «серой слизи».
Книга Эрика Дрекслера (1991) — попытка рассказать о том, что такое нанотехнологии, почему они изменят наш мир и когда ждать их появления.

Безграничное будущее: нанотехнологическая революция - читать онлайн бесплатно полную версию (весь текст целиком)

Безграничное будущее: нанотехнологическая революция - читать книгу онлайн бесплатно, автор Эрик Дрекслер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я думаю, что в конечном итоге у нас есть большие шансы добиться по-настоящему волнующих вещей в разработках с de novo, потому что наши возможности намного больше, чем у природы. Подумайте о способности летать: можно было бы разводить лучших почтовых голубей, а не создавать самолеты». Биологическое сообщество, впрочем, склоняется больше к орнитологии, чем к аэрокосмической технике. Опыт Деградо заключается в том, что «многие биологи считают, что если вы не работаете с реальными биологическими объектами (естественными белками), вы не занимаетесь биологией, поэтому они неохотно пользуются нашими результатами. С другой стороны, они признают, что это хорошая химия».

Каковы пути развития белковой инженерии?

Как и физики IBM, проектировщики белков стремятся развивать молекулярную инженерию. В 1989 году Билл Деградо предсказал: «Я думаю, что, возможно, мы сможем получить катализаторы или ферменты, которые должны стать катализаторами для реакций, не катализируемые в природе». Катализаторы — это молекулярные машины, которые ускоряют химические реакции: они формируют условия для двух реагирующих молекул, их присутствие помогает реакции проходят быстрее, до миллиона реакций в секунду. Новые катализаторы для реакций, которые сейчас идут медленно, обеспечат химической промышленности огромную экономию средств.

Это предсказание подтвердилось уже через несколько месяцев, когда денверские исследователи Джон Стюарт, Карл Хан и Вислав Клис объявили о новом ферменте, разработанном ими с нуля в течение двух лет и успешно получившемся с первой попытки. Этот катализатор заставляет некоторые реакции идти примерно в 100 000 раз быстрее. Нобелевский лауреат по биохимии Брюс Меррифилд считает, что «если другие смогут воспроизвести и расширить эту работу, это будет одним из самых важных достижений в биологии и химии».

У Деградо есть долгосрочные планы по разработке белков помимо создания новых катализаторов: «Это позволит нам думать о разработке молекулярных устройств в ближайшие пять-десять лет. В конечном итоге должна быть возможность спроектировать конкретную конструкцию и построить ее. Тогда у вас будут, скажем, белковые молекулы, которые самоорганизуются в сложные молекулярные объекты, которые могут служить машинами. Но есть предел тому, какими маленькими вы можете сделать устройства. Вы будете уменьшать вещи до тех пор, пока не окажется, что еще меньше их сделать нельзя, потому что вы достигли молекулярных размеров».

Марк Пирсон утверждает, что руководство «Du Pont» поддерживает это стремление. Что касается перспектив развития нанотехнологий и ассемблеров, он заметил: «Понятно, что это наверняка потребует денег, усилий и хороших идей. Но с моей точки зрения, нет никаких абсолютных фундаментальных ограничений, которые бы помешали нам делать такого рода вещи». Он не сказал, что его компания планирует развивать нанотехнологии, но такие заверения на самом деле и не нужны. «Du Pont» уже находится на пути создания нанотехнологий, по другим — более краткосрочным, коммерческим — причинам. Как и IBM, если они решат успешно развиваться, у них есть ресурсы и перспективные люди, необходимые для успеха.

Кто еще занимается молекулярными объектами?

Химики, большинство из которых не работают над белками, являются традиционными экспертами в построении молекулярных объектов. Выполняя свою работу, они строят молекулы уже более века, их умение и уверенностью постоянно растут. Все их методы косвенные: они работают с миллиардами атомов одновременно — используя массовый параллелизм, — но не контролируя их положение. Молекулы обычно беспорядочно попадают в жидкость или газ, как кусочки головоломки, которые смогут правильно соединяться друг с другом при встряхивании в коробке, или не смогут. При правильном замысле и планировании, большинство частей соединятся, как и требуется.

Химики смешивают молекулы в огромном масштабе (с нашей точки зрения моделирования, пробирка содержит вспенивающийся молекулярный рой с объемом внутреннего моря), но они все же достигают точных молекулярных преобразований. Учитывая, что они работают таким окольным путем, их достижения поражают. Отчасти это является результатом огромного объема работы, проделанной в этой области в течение многих десятилетий. Тысячи химиков работают над молекулярным строительством только в Соединенных Штатах; добавьте к этому химиков в Европе, Японии и в остальном мире, и вы получите огромное сообщество исследователей, добивающихся больших успехов. Даже если печатать только один абзац резюме каждого отчета об исследованиях, рефератов и руководств по химической литературе, публикации займут несколько библиотечных стен, и каждый год полочное пространство библиотеки будет заполняться еще на много футов.

Как смешивание химических веществ может создавать молекулярные объекты?

Инженер сказал бы, что химики (по крайней мере, те, кто специализируется на синтезе) заняты строительными работами, и был бы поражен, что им удается чего-то добиться, несмотря на то, что они не в состоянии захватывать детали и доставлять их на нужное место. Химики, по сути, работают со связанными за спиной руками. Молекулярное производство может быть названо «позиционной химией» или «позиционным синтезом» и даст химикам возможность перемещать молекулы в трехмерном пространстве. Вместо того чтобы пытаться собирать пазлы из деталей, которые будут склеиваться сами по себе, после того, как их встряхивают вместе в коробке, химики смогут оперировать и нужным образом соединять большие как кирпичи молекулы. Основные принципы химии останутся прежними, но стратегии строительства станут гораздо проще.

Не имея возможности контролировать положение, химики сталкиваются примерно с такой проблемой: представьте себе гигантскую стеклянную бочку, полную крошечных сверл на батарейках, вибрирующих и дергающихся во всех направлениях. Ваша цель состоит в том, чтобы взять кусок дерева и просверлить отверстие только в одном определенном месте. Если вы просто бросите его в бочку, он будет бессистемно просверлен во многих местах. Чтобы контролировать процесс, вы должны защитить все места, в которых вам дырки не нужны — возможно, путем приклеивания защитных металлических пластин на большей части поверхности древесины. Эта проблема — как защитить одну часть молекулы, воздействуя на другую, при создании все больших и больших молекул — заставила химиков применять хитроумные уловки.

Если химики могут создавать молекулы, почему они не строят причудливые молекулярные машины?

Химики могут достичь больших результатов, но они сосредоточили большую часть своих усилий на дублировании молекул, обнаруженных в природе и внесении в них незначительных изменений. В качестве примера возьмем палитоксин, молекулу, обнаруженную в Гавайском коралле. Получить его в лаборатории было очень трудно, поэтому его назвали «Эверестом синтетической химии», а его синтез был провозглашен триумфом. Дальнейшие усилия были направлены на создание небольших молекул с необычными связями или молекул с классической симметрией, таких как «кубан» и «додекаэдр» (названых так в честь Платоновых тел).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Дрекслер читать все книги автора по порядку

Эрик Дрекслер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Безграничное будущее: нанотехнологическая революция отзывы


Отзывы читателей о книге Безграничное будущее: нанотехнологическая революция, автор: Эрик Дрекслер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x