Фрэнсис Крик - Что за безумное стремленье! [litres]
- Название:Что за безумное стремленье! [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2020
- Город:М.
- ISBN:978-5-17-115954-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнсис Крик - Что за безумное стремленье! [litres] краткое содержание
Что за безумное стремленье! [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Я был бы рад похвастаться, что доклад прошел успешно, но не могу. Начал я достаточно гладко, старательно зачитывая, но по мере того как входил в раж, мое произношение становилось все более диким. Обсуждение – в основном на французском – далось мне крайне тяжело. После доклада я спросил Франсуа, как я выступил. «Не так уж плохо, – тактично отозвался он, – только непохоже на себя ». Я понял, что он имеет в виду: ни спонтанности, ни юмора. С тех пор я ни разу не пытался делать доклады на иностранных языках, хотя мое французское произношение со временем и улучшилось.
Стало ясно, что код не перекрывается, но из-за этого тут же встала новая проблема. Если код читался как последовательность неперекрывающихся триплетов, как узнать, где границы между триплетами? Иначе говоря, если мы представим себе, что нужные тройки разделены запятыми (например, ATЦ, ЦГA, TТЦ), откуда клетка знает, где ставить «запятые»? Очевидная мысль, что считывание начинается с начала (где бы оно ни находилось) и продвигается шагами по одной тройке за раз, казалась слишком простой, и я решил (ошибочно), что должно быть какое-то другое решение. Мне пришло в голову попытаться смоделировать код со следующими характеристиками. При наличии определенной рамки считывания все триплеты будут «осмысленными» (то есть кодирующими ту или иную аминокислоту), тогда как все триплеты, считывающиеся вне рамки (расположенные в местах воображаемых «запятых»), будут «бессмысленными» – то есть у них не будет адаптора и потому они не смогут кодировать никакую аминокислоту. Я рассказал об этой идее Лесли Орджелу, который тут же отметил, что в таком коде максимальное количество кодирующих триплетов будет равняться 20. Комбинация типа ААА должна быть бессмысленной, поскольку последовательность ААА может читаться с любым сдвигом. (К тому времени мы уже приняли по умолчанию, что любая аминокислота может следовать за каждой.) Это исключало 4 из 64 триплетов. Если триплет XYZ кодирующий, то круговые перестановки YZX и ZXY должны быть некодирующими, так что максимальное число кодирующих триплетов равняется 60 : 3 = 20. Вопрос был в том, существует ли набор из 20 триплетов с подобными свойствами. Я валялся в постели с тяжелой простудой, но обнаружил, что по крайней мере 17 насчитать могу легко. Лесли указал на эту проблему Джону Гриффиту, который насчитал 20 с подходящими свойствами. Мы вскоре обнаружили несколько других решений (плюс множество перестановок), так что сомнения отпали: такой код возможен. Мы даже изобрели убедительный довод, объясняющий, чем он полезен.
Проблема, как получить искомые двадцать кодирующих триплетов, в действительности не самая трудная. Чуть позже я купил билет на ночной рейс из Штатов в Англию. В ожидании посадки я встретил космолога Фреда Хойла и разговорился с ним. Он спросил меня, чем я занимаюсь, и я объяснил ему идею кода «без запятых». На следующее утро, когда самолет приближался к английскому побережью, Хойл подошел к моему креслу с решением – он обдумал его за ночь.
Естественно, идея «кода без запятых» привела нас с Орджелом и Гриффитом в восторг. Она выглядела так красиво, можно сказать, элегантно. На входе – волшебные числа 4 (количество оснований) и 3 (триплет), на выходе – волшебное число 20, число аминокислот. Без дальнейших хлопот мы записали свои соображения для Галстучного клуба РНК. И все же меня одолевали сомнения. Я понимал, что у нас нет иных свидетельств в пользу кода, кроме эффектного совпадения числа 20. Но если объявится какое-то другое число, то нам придется отбросить эту идею и искать другой вариант кода, который давал бы 20 аминокислот, так что само по себе число 20 не было доказательством.
Несмотря на мои тревоги, новая гипотеза кода привлекла внимание. После того как четверо исследователей поинтересовались, можно ли сослаться на нашу работу (записка для Галстучного клуба РНК не приравнивалась к публикации), мы решили написать статью для «Трудов Национальной академии наук США», где она и вышла в 1957 г. Пересказ ее даже появился в популярной книге «Виток жизни» ( The Coil of Life ), написанной Рут Мур, хотя эта книга вышла лишь в 1961 г., когда мы уже разочаровались в этой идее.
Так как модель «кода без запятых» отводила на каждую аминокислоту только по одному триплету, то предполагалось, что можно, зная, какой аминокислоте какой триплет соответствует, определить, из каких оснований состоит ДНК – исходя из того, что все они кодируют белки, – опираясь на среднестатистический аминокислотный состав белков. Так как состав белков у всех организмов весьма похож (хотя мы уже знали о существовании небольших различий), это подразумевало, что молекулы ДНК у всех видов по составу близки. По мере накопления данных, в особенности о разнообразных типах бактерий, становилось ясно, что это вовсе не так. Разумеется, количество аденина всегда равнялось количеству тимина (А = Т), поскольку этого требовал закон комплементарности, и по этой же причине гуанина было столько же, сколько цитозина (Г = Ц), но сама по себе структура ДНК не накладывала никаких ограничений на соотношение (А + Т): (Г + Ц), и это соотношение, как оказалось, значительно варьирует от организма к организму. Следовательно, «код без запятых» был ошибочным решением.
Удары, окончательно похоронившие его, пришли с двух сторон. Наши собственные исследования мутаций с фазовыми сдвигами, о которых будет рассказано в гл. 12, поставили его под сомнение, но более решительный удар нанес Маршалл Ниренберг, показавший, что полимер из одного урацила (простейшая форма РНК) кодирует полифенилаланин (см. с. 222) – ведь в рамках «кода без запятых» триплет УУУ должен был быть некодирующим. Итоговая расшифровка генетического кода, подтвержденная неоднократно различными методами, решительно доказала, что вся идея была ошибочной. Правда, можно допустить, что такой принцип мог сыграть некоторую роль на заре возникновения жизни, когда код только начал эволюционировать, – но это чистой воды домыслы.
Идея «кода без запятых» привлекла внимание специалистов по комбинаторике, в особенности Сола Голомба. Нам так и не удалось разрешить проблему исчисления всех возможных вариантов четырехбуквенного кода с перекрывающимися триплетами, хотя мы нашли не одно решение. Решение было разработано Голомбом и Уэлчем с помощью очень простого соображения (до которого нам самим стоило бы додуматься), послужившего ключевым звеном доказательства. Примерно в то же время проблему независимо решил голландский математик Х. Фрейденталь.
В конце концов код (см. приложение Б) был расшифрован экспериментальными, а не теоретическими, методами. Основной вклад внесли команды Маршалла Ниренберга и Гобинда Хораны. Существенную роль сыграла также команда под руководством Северо Очоа, уже нобелевского лауреата на тот момент. По мере выяснения кода делались попытки угадать целое по кусочку, но большей частью неудачные. В некоторых отношениях код воплощает основу молекулярной биологии, как таблица Менделеева воплощает основу химии. Но между ними есть глубокое различие. Периодическая таблица, вероятно, верна для любой точки во Вселенной и тем более работает в тех местах, где температура и давление близки земным. Если же в других мирах есть жизнь и даже если эта жизнь состоит из нуклеиновых кислот и белков (что вовсе не обязательно), ее код, скорее всего, будет значительно отличаться. Даже здесь, на Земле, некоторые организмы демонстрируют мелкие различия. Генетический код, как и сама жизнь, не свойство вечной природы вещей, а – по крайней мере отчасти – продукт случайности.
Читать дальшеИнтервал:
Закладка: