Фрэнсис Крик - Что за безумное стремленье! [litres]
- Название:Что за безумное стремленье! [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2020
- Город:М.
- ISBN:978-5-17-115954-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Фрэнсис Крик - Что за безумное стремленье! [litres] краткое содержание
Что за безумное стремленье! [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Физика отличается и тем, что ее выводы можно выразить в виде могучих, емких и часто контринтуитивных общих законов. В биологии нет по сути ничего аналогичного специальной и общей теории относительности, или квантовой электродинамике, или даже таким простейшим законам сохранения, какие известны ньютоновской механике: сохранения энергии, момента и углового момента. У биологии есть собственные законы, например, менделевские законы генетики, но они нередко суть всего лишь довольно грубые обобщения, из которых имеются важные исключения. Законы физики, как считается, одинаковы повсюду во Вселенной. Вряд ли это утверждение справедливо для биологии. Мы не представляем себе, насколько внеземная биология (буде таковая существует) похожа на нашу. Можно с достаточной уверенностью предположить, что ею тоже будет управлять естественный отбор или что-то вроде него, но даже это всего лишь правдоподобная догадка.
Что присуще биологии, так это механизмы – механизмы, состоящие из химических компонентов и трансформирующиеся под влиянием других, более позднего происхождения, механизмов, которые наслаиваются на более ранние. Бритва Оккама – полезный инструмент в физических науках, но ею бывает весьма опасно орудовать в биологии. Потому в биологических исследованиях опрометчиво руководствоваться красотой и элегантностью. Хотя о ДНК можно сказать, что она проста и элегантна, следует помнить, что ДНК почти наверняка возникла на заре жизни, когда живая природа должна была быть устроена просто – иначе она не смогла бы функционировать.
Биологам следует постоянно помнить о том, что наблюдаемое ими не спроектировано, а развилось в ходе эволюции. Можно предположить, следовательно, что именно эволюционными соображениями биология должна руководствоваться в значительной степени, но это далеко не так. Достаточно трудно изучать то, что происходит сейчас. Пытаться точно установить, что происходило в ходе эволюции, еще труднее. Поэтому эволюционные соображения могут быть полезны как подсказки , обозначающие дальнейшие направления исследований, но весьма опасно чрезмерно полагаться на них. Слишком легко прийти к ошибочным умозаключениям, если еще не достигнуто ясное понимание изучаемого процесса.
Все это может серьезно помешать физикам освоиться в биологических исследованиях. Физики слишком склонны искать неверные обобщения, стряпать теоретические модели, которые оказываются слишком красивыми, слишком убедительными и слишком гладкими. Неудивительно, что такие модели редко согласуются с данными. Чтобы создать по-настоящему хорошую биологическую теорию, нужно вглядеться в кавардак, созданный эволюцией, и различить за ним базовые механизмы, понимая, что поверх них наверняка наслоились другие, вторичные механизмы. То, что физику представляется безнадежно запутанным процессом, природа могла посчитать простейшим решением, ведь она умеет лишь надстраивать поверх того, что уже имеется.
Хорошей иллюстрацией может служить генетический код. Кому бы пришло в голову изобрести столь сложное распределение 64 триплетов (см. Приложение В)? В теории очевидное решение – код без «знаков препинания» (см. с. 171). Элегантное решение, основанное на совсем простых посылках, – и притом совершенно неверное. Однако в генетическом коде есть своего рода простота. Все кодоны состоят лишь из трех оснований. Азбука Морзе, напротив, состоит из символов разной длины, более короткие последовательности кодируют более частотные буквы. Благодаря этому код более экономен, но подобные свойства слишком сложны, чтобы они могли возникнуть на раннем этапе эволюции. В биологии, следовательно, доводам от «экономии» не следует особенно доверять, ведь мы не знаем конкретных проблем, с которыми сталкивались мириады организмов в ходе эволюции. А не зная этого, как можно определять степень затратности и окупаемости?
Из примера с генетическим кодом можно извлечь и более общий урок: что в биологии некоторые проблемы невозможно – если не вообще, то на данном этапе – разрешить теоретическими методами по двум основным причинам. Первую я уже обозначил: наблюдаемые в настоящее время механизмы могут быть отчасти продуктом исторической случайности. Вторая состоит в том, что необходимые «расчеты» могут оказаться непомерно сложными. Это, по-видимому, применимо к проблеме укладки белковых молекул.
Природа производит «расчеты» по укладке играючи, безукоризненно и одновременно – сочетание, которое мы и надеяться не можем точно воспроизвести. Более того, эволюция сумеет найти удачные стратегии использования возможных структур так, чтобы прийти к нужной укладке кратчайшим путем. Окончательная структура представляет собой тонкий баланс двух больших чисел – энергии притяжения между атомами и энергии отталкивания. Ту и другую очень трудно рассчитать точно, и все же для оценки свободной энергии любой возможной структуры нам приходится оценивать разницу между ними. Проблему еще больше осложняет тот факт, что процесс обычно происходит в водном растворе, так что нам приходится учитывать множество молекул воды по соседству с белковой молекулой.
Эти затруднения не означают, что нам не стоит искать общие принципы (например, белок в водном растворе сворачивается так, чтобы гидрофобные боковые цепочки не контактировали с водой), но они означают, что, возможно, подобные проблемы стоит обойти и не затрагивать, когда еще слишком рано [49] В настоящее время теоретические расчеты укладки белков сделали значительные успехи благодаря развитию компьютерной техники и краудсорсингу (примером может служить онлайн-проект Foldit ).
.
Из истории молекулярной биологии можно извлечь немало других уроков, хотя и в других областях науки. Удивительно, как одно элементарное заблуждение может завести в непроглядный туман. Одним из примеров может служить моя ошибочная идея, будто каждое из оснований ДНК существует по крайней мере в двух различных формах. Вторая моя ошибка, сыгравшая более роковую роль, – отождествление рибосомной РНК с информационной (матричной) РНК. Но ведь какой правдоподобной эта идея казалась! Эмбриолог Жан Браше продемонстрировал, что в цитоплазме клеток, в которых ускоренно протекает синтез белков, присутствует много РНК. Мы с Сидни знали, что должен быть какой-то гонец, передающий наследственное послание от каждого гена ядерной ДНК рибосомам цитоплазмы, и мы предполагали, что эту роль выполняет РНК. В этом мы оказались правы. Кто бы осмелел настолько, чтобы утверждать, что наблюдаемая нами РНК – вовсе не гонец, что гонцом служит другой тип РНК, еще не открытый, быстро распадающийся и потому присутствующий в малых количествах? Лишь постепенное накопление экспериментальных данных, противоречащих нашей основной идее, смогло разбить наш шаблон мышления. Притом мы остро сознавали, что тут что-то не так, и постоянно стремились выяснить, что же именно. Лишь недовольство собственной теорией позволило нам определить, где же закралась ошибка. Не прояви мы такую въедливость в размышлениях над этими противоречиями, ответа нам было бы не видать. В конечном итоге, конечно, ошибку обнаружил бы кто-то другой, но прогресс в данной области затормозился бы – а мы бы оказались в дураках.
Читать дальшеИнтервал:
Закладка: