Наталья Сердцева - 99 секретов науки
- Название:99 секретов науки
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция «БОМБОРА»
- Год:2017
- Город:Москва
- ISBN:978-5-699-92738-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наталья Сердцева - 99 секретов науки краткое содержание
Да здравствует наука БЕЗ занудства и непонятных терминов!
99 секретов науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Более перспективные разработки связаны с метаматериалом, который не отражает видимый свет, а уводит его в сторону. Как мы видим предметы? Наш глаз воспринимает отраженный от них свет, являющийся электромагнитной волной.
Процессом отражения можно управлять, создав материал с отрицательным коэффициентом преломления. Свет не будет от него отражаться, предмет, накрытый этим материалом, станет невидимым.
Теоретически создание метаматериала возможно, но на практике ученых подстерегает множество трудностей, над которыми еще работать и работать. Одна из проблем заключается в том, что для каждого спектра цвета (красного, зеленого, синего) нужно создавать особые настройки метаматериала. Совместить множество настроек в одной ткани возможно, если уменьшить составляющие ее частицы до нескольких микрон.
Именно этим и заняты физики, занимающиеся данным направлением. Так что вполне возможно, что в ближайшие годы появится плащ, которому позавидует сам Гарри Поттер.
№ 80. Шаг назад, два шага вперед. Сила трения покоя на примере поезда
Что мешает нам сдвинуть с места предмет? Сила трения покоя. Именно она давит на наш палец, если мы толкаем им книгу, лежащую на столе. На гладком столе сдвинуть книгу пальцем легче, чем на шершавом, – сила трения покоя зависит в том числе и от соприкасающихся материалов.

Первые изобретатели железной дороги очень беспокоились, что колеса будут проскальзывать по гладким рельсам и паровоз начнет буксовать. Один инженер даже создал зубчатые колеса, двигающиеся по зубчатым рельсам. Но они не понадобились. Скольжению колес поезда по рельсам препятствует сила трения покоя, направленная в сторону, противоположную возможному скольжению. Эта же сила мешает паровозу тронуться, поэтому перед началом движения он сдает назад, меняя направление движения и ослабляя действие силы трения покоя.
№ 81. При сверхнизких температурах. Третий закон термодинамики
Энергия так же переходит из одного состояния в другое, как вода: если ее нагреть, она превратится в пар, если заморозить, она станет твердой и не сможет течь. С водой все довольно просто, с энергией – гораздо сложнее. Существуют три закона термодинамики, описывающие основные свойства энергии.
Первый закон сообщает нам, что энергия постоянно переходит из одного состояния в другое. Второй доказывает, что любая система, оставленная в покое, придет в хаос. Третий имеет дело с такой величиной, как абсолютный нуль температур. Так называют самую низкую температуру, которая возможна в нашей Вселенной. Ученые ее вычислили, она равна –273,15 °C. Они же установили, что чем ниже температура, тем медленнее движение молекул. А при абсолютном нуле движение прекращается вовсе, и энтропия вместе с ним.
№ 82. Снежинки-близнецы: миф или реальность? Ажурные кристаллы льда
Иногда ученые занимаются полезными для человечества проблемами, а иногда просто развлекаются. Например, изучают форму снежинок, сравнивают и гадают: возможно ли в природе существование двух одинаковых ажурных кристаллов льда? На самом деле такое времяпровождение только кажется праздным: чем больше известно о природе снега и о кристаллических структурах, тем лучше для науки.
Снежинки прекрасны и удивительны. Они на 95 % состоят из воздуха, в них совсем немного твердого льда, и поэтому они такие легкие и пушистые. Снежинки падают гораздо медленнее дождевых капель, их скорость просто черепашья – меньше одного километра в час! Размер обычной снежинки невелик, около половины сантиметра. Чем крупнее снежинка, тем медленнее она опускается на землю и тем фантастичнее выглядит снегопад. Самые крупные снежинки, зафиксированные метеорологами, были размером с тарелку, их диаметр составлял больше 30 см! Вероятно, это было потрясающее зрелище.
Вернемся к вопросу об одинаковости снежинок. Сто лет назад считалось, что одинаковых снежинок не бывает. Любители охотились за их разными формами, фотографировали, зарисовывали, изучали и были уверены, что каждый снежный кристалл уникален. В конце ХХ века мнение изменилось: ученым удалось в лабораторных условиях создать одинаковые снежинки. А раз это получилось в лаборатории, значит, возможно и в природе. Вероятность того, что кристалл льда, на который влияет множество разных факторов, два раза сформируется абсолютно одинаковым, очень мала, но она существует.

Но совсем недавно и эта теория была опровергнута. Оказывается, даже если снежинки одинаковы внешне, они имеют разную внутреннюю кристаллическую структуру. Так что одинаковых снежинок все-таки не бывает. Во всяком случае, так считается на сегодняшний день.
№ 83. Звук превращается… в свет! Сонолюминесценция
Изучая свойства ультразвука, физики экспериментировали с разными средами. Создавая мощную ультразвуковую волну в емкости с водой, они наблюдали странное явление: в центре водяного резервуара появлялось голубое свечение. Много лет никто не мог понять, что это такое, ведь не может же звуковая волна создавать свет. Оказывается, может!
Звуковая волна – это чередование двух видов давления, высокого и низкого. Когда давление максимально понижается, оно может стать отрицательным, «разорвать» воду и создать пузырек газа. При повышении давления этот пузырек мгновенно схлопывается, из-за этого происходит резкое нагревание до очень высоких температур, что вызывает короткую вспышку света. В определенных условиях пузырек воздуха остается на месте, сжимается-расширяется, и свечение кажется стабильным.
№ 84. Ходить по воде? Легко. Неньютоновская жидкость
Вы когда-нибудь катались в лодке по озеру? Если катались, то, возможно, заметили, что грести веслами труднее, если делать это быстро. Заметил это и Исаак Ньютон еще в конце XVII века. Дотошный ученый не мог пройти мимо данного примечательного факта, он занялся исследованием свойств воды и других жидких субстанций и вывел закон: вязкость жидкости возрастает пропорционально силе воздействия на нее. Этот закон относится к обычным жидкостям, с которыми мы постоянно сталкиваемся в быту. Такие жидкости назвали ньютоновскими.
Но в природе существуют и неньютоновские жидкости, обладающие совершенно поразительными свойствами: их вязкость и плотность становятся больше, если воздействовать на них быстро и с определенной силой. Такая жидкость при достаточно сильном воздействии может даже затвердеть!
Читать дальшеИнтервал:
Закладка: