Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё

Тут можно читать онлайн Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент 5 редакция «БОМБОРА», год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Сет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё краткое содержание

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - описание и краткое содержание, автор Сет Cтивенс-Давидовиц, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Люди склонны преувеличивать и не договаривать, опросы не показывают всей картины, исследования недостаточно репрезентативны ‒ в общем, лгут все… Кроме Big Data! Перед вами сенсационная книга о том, как при помощи больших данных и современных технологий можно узнать всю подноготную современного общества. Автор этой книги, специалист Google по Data Science, выяснил, что скрывают люди, какие они на самом деле, а не какими хотят казаться. Что же он узнал?

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - читать онлайн бесплатно ознакомительный отрывок

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сет Cтивенс-Давидовиц
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как видно, действуя только интуитивно и отказываясь от использования компьютеров, мы, порой, приходим к удивительным результатам. Но это может привести и к серьезным ошибкам. Бабушка, надо полагать, попалась в одну из когнитивных ловушек: иногда мы склонны преувеличивать значение собственного опыта. Если говорить языком специалистов по обработке и анализу данных, мы придаем намного большее значение фактам, взятым из одного источника – нас самих.

Бабушка была настолько сосредоточена на воспоминаниях о ее вечерних встречах с дедушкой и их друзьями, что не уделила достаточного внимания другим парам. Например, она упустила возможность рассмотреть ситуацию со своим деверем и его красоткой-женой, которая весь вечер болтала с небольшой постоянной группой друзей, но часто ссорилась с мужем. В конце концов они развелись. Бабушка забыла полностью рассмотреть историю моих родителей – ее дочери и зятя. Они нередко проводили вечера каждый сам по себе: мой отец играл в джаз-клубе или в мяч со своими друзьями, а мама отправлялась в ресторан или в театр со своими приятельницами, но это не мешало им счастливо прожить много лет в браке.

Полагаясь лишь на свою интуицию, мы также можем быть обмануты базовой человеческой склонностью к драматизации происходящего. Мы любим переоценивать важность всего, что может стать основой для незабываемого сюжета. Например, в ходе одного опроса выяснилось, что торнадо считается более распространенной причиной смерти [25] Д. Канеман, «Думай медленно… Решай быстро», АСТ, 2017. , чем астма. Хотя на самом деле от астмы умирает примерно в 70 раз больше людей [26] Между 1979 и 2010 годами, в среднем, 55,81 американцев погибли от ураганов и 4216,53 умерли от астмы. Посмотрите ежегодную статистику США погибших от ураганов в Национальной Метеорологической службе: http://www.spc.noaa.gov/climo/torn/fatalmap.php и тенденцию заболеваемости и смертности от астмы – в американской легочной ассоциации, эпидемиологии и статистики. . В смерти от астмы нет ничего впечатляющего, эти случаи не попадают в новости. А вот смерти от торнадо попадают.

Другими словами, полагаясь только на услышанное или на личный опыт, мы часто неправильно судим об устройстве мира. Несмотря на то, что методология правильной работы с фактами так же интуитивна, ее результаты обычно являются парадоксальными. Наука о данных использует естественное и интуитивное человеческое свойство – способность увидеть комбинации и связи и вдохнуть в них смысл, – и наполняет его силой, демонстрируя нам, что мир устроен совершенно не так, как мы думали. Именно это и произошло, когда я исследовал прогностические показатели успешных выступлений в баскетболе.

В детстве у меня была одна, только одна мечта. Я хотел вырасти и стать экономистом и специалистом по обработке и анализу данных. Нет, я, конечно, шучу. Я отчаянно хотел стать профессиональным баскетболистом, чтобы пойти по стопам своего кумира Патрика Юинга [27] Мое любимое видео Юинга «Patrick Ewing’s Top 1 °Career Plays» («10 лучших игр за карьеру Патрика Юинга»), на YouTube, размещено 18 сентября 2015 года, https://www.youtube.com/watch?v=Y29gMuYymv8; и «Patrick Ewing Knicks Tribute» видео на YouTube, опубликовано 12 мая 2006 года, https://www.youtube.com/watch?v=8T2l5Emzu-I. , лучшего центрового «Нью-Йорк Никс» всех времен.

Иногда мне кажется, что внутри каждого ученого, занимающегося сбором, изучением и анализом данных, сидит ребенок, пытающийся выяснить, почему его детские мечты не сбываются. Поэтому неудивительно, что в последнее время я внимательно изучал показатели, необходимые для попадания в НБА. Результаты исследования оказались неожиданными. На самом деле они лишний раз продемонстрировали, как серьезная наука о данных может изменить ваше представление о мире и насколько нелогичными могут оказаться цифры.

Я рассмотрел следующий вопрос: у кого больше шансов добиться успеха в НБА – у бедняков или у представителей среднего класса?

Большинство людей полагает, что у первых. Житейская мудрость гласит: те, кто рос в трудных условиях, возможно, родился у одинокой матери-подростка, обретают драйв, необходимый для достижения максимального успеха в этом конкурентном виде спорта.

Такую точку зрения в интервью «Спортс иллюстрейтед» высказал Уильям Эллерби, школьный тренер по баскетболу в Филадельфии. «Дети из пригородов, как правило, играют для своего удовольствия, – сказал он. – Для городских же детей игра в баскетбол – вопрос жизни и смерти» [28] S. L. Price, «Whatever Happened to the White Athlete?» («Что случилось с белым спортсменом?»), Sports Illustrated , 8 Декабря 1997 года. . Я, увы, был воспитан родителями, счастливо жившими в пригороде Нью-Джерси и состоявшими в браке. Леброн Джеймс, лучший игрок своего поколения, родился в бедной семье у 16-летней матери-одиночки в Акроне, Огайо.

Естественно, по результатам проведенного мной интернет-опроса [29] Этот опрос потребителей Googleе я провел 22 октября 2013 года. Я спросил: «Где, по вашему мнению, родились большинство игроков НБА?» Были два варианта ответов: «бедные кварталы» и «кварталы среднего класса»; 59,7 % опрошенных выбрали «бедный район». , я предположил, что большинство американцев думают так же, как тренер Эллерби и я, – что большинство игроков НБА растут в бедности.

Верно ли это расхожее мнение?

Давайте посмотрим на факты. Не существует всеобъемлющего источника данных о социоэкономике игроков НБА. Но, проведя тщательное исследование целой кучи источников (basketball-reference.com, ancestry.com, бюро переписи США и некоторые другие), мы можем понять, какие семьи больше всего способствуют успеху в НБА. Обратите внимание: в этом исследовании были использованы различные источники данных, некоторые побольше, другие поменьше, одни онлайновые, другие – вне Сети. Интересно, что, активно черпая из новых цифровых источников, хороший специалист по анализу данных не гнушается пользоваться и старомодными – если это может принести пользу. Самый лучший способ получить правильный ответ на вопрос – объединить все доступные данные.

Первая релевантная информация – родина каждого игрока. Сначала я записал, сколько черных и белых мужчин родилось в 1980-х годах в каждом округе США. Затем – сколько из них попали в НБА. При этом сравнил эти данные со средним доходом семьи в соответствующем округе. Я также проконтролировал расовую демографию округа, поскольку (но это тема для другой книги) чернокожие мужчины попадают в НБА примерно в 40 раз чаще, чем белые.

Факты говорят нам о том, что человек имеет значительно больше шансов попасть в НБА, если он родился в более богатом округе. Например, у черного парня, появившегося на свет в одном из самых богатых округов США, вдвое больше шансов попасть в НБА, чем у черного ребенка из беднейшего округа. Вероятность попадания в НБА белого малыша, родившегося в одном из самых богатых округов, на 60 % выше, чем у белого ребенка из самого бедного округа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сет Cтивенс-Давидовиц читать все книги автора по порядку

Сет Cтивенс-Давидовиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все лгут. Поисковики, Big Data и Интернет знают о вас всё отзывы


Отзывы читателей о книге Все лгут. Поисковики, Big Data и Интернет знают о вас всё, автор: Сет Cтивенс-Давидовиц. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x