Михаил Ахманов - Вода, которую мы пьем
- Название:Вода, которую мы пьем
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2002
- Город:Москва
- ISBN:5-699-15468-Х
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Ахманов - Вода, которую мы пьем краткое содержание
Книга представляет собой серьезное исследование и одновременно увлекательное повествование, посвященное проблеме качества питьевой воды. Автор уделяет особое внимание способам очистке воды в домашних условиях, оценивает эффективность и полезность фильтров, предлагаемых отечественными и зарубежными фирмами. Работая над книгой, исследователь собрал сведения о качестве питьевой воды в разных регионах России, получил консультации ведущих специалистов. Книга будет интересна всем, кого заботит собственное здоровье, которое, как известно напрямую связано с качеством питьевой воды.
Вода, которую мы пьем - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Представим себе воду, в которой имеется только соль NaCl и больше никаких примесей. Соль диссоциирует на ионы Na +и Cl —, а вода, хоть и слабо, тоже диссоциирует на ионы H +и OH —; следовательно, у нас имеется электролит. Опустим в него электроды, подадим на них напряжение – на левый «плюс» (анод), на правый «минус» (катод), а кроме того, поставим между электродами перегородку-диафрагму, отделяющую анодное пространство от катодного (левое от правого). Что произойдет? Через электролит потечет ток: положительно заряженные ионы устремятся к катоду, отрицательно заряженные – к аноду. Ионы H +и OH —маленькие, юркие и двигаются быстрее более крупных ионов Na +и Cl —; следовательно, из анодного пространства быстро уйдут ионы OH —, превратившись на аноде в кислород и воду, а из катодного – ионы H +, которые на катоде превратятся в водород. Поскольку наш электролит разделен диафрагмой, она не пропустит ионы OH —из правого объема – к аноду, а ионы H +из левого объема – к катоду. В результате в левом (анодном) объеме будет много ионов H +, которые с ионами Cl —образуют соляную кислоту HCl. В правом (катодном) объеме окажется много ионов OH —, которые с ионами Na +образуют щелочь NaOH. Что же у нас получилось? В анодной половине – слегка кислотная среда, она же – «мертвая» вода, в катодной половине – слегка щелочная среда, она же – вода «живая». Словом, мы получили активированную воду.
Но это лишь иллюстрация разнообразных процессов, которые могут происходить в воде в зависимости от наличия в ней тех или иных примесей, материала электродов и разделяющих их диафрагм. Так, например, если в воде имеются хлориды, то при электролизе будет выделяться хлор и другие активные окислители, уничтожающие микрофлору точно так же, как в случае хлорирования воды на ВС; а затем эти соединения будут разрушены на следующих стадиях электролитического процесса. Этим же способом можно разрушить или перевести в нейтральные соединения многие вредные вещества, либо сосредоточить их в определенном объеме и выпустить вместе с водой в дренаж. Фактически данный метод позволяет отделить очищенную воду от грязной, причем работает электрический ток, а не сорбент; ничего не надо заменять, ресурс практически неограничен, расходных картриджей не имеется.
Однако этот способ имеет веские недостатки: высокая цена, необходимость регулярно промывать электроды слабым раствором кислоты (которую еще надо найти и купить!) и невозможность контроля за качеством фильтрации. С фильтрующими модулями «Аквафор», «Гейзера» или «Барьера» все ясно: вы можете их вскрыть или вытащить картриджи в начале, в середине или в конце заявленного ресурса и убедиться, что картриджи темнеют – значит, работают. С электрохимическим фильтром дела обстоят по-другому: из одной трубки течет очищенная вода, из другой – грязная, но различия между ними не слишком заметны – по крайней мере, в Петербурге. Однако не стоит забегать вперед: возможности проверки и мнения специалистов по поводу очистки воды мы обсудим в последней главе.
Подведем итог. Имеются три основных, наиболее распространенных и широко применяемых метода фильтрации: механический, сорбционный и ионообменный. Кроме того, есть методы более экзотические – мембранный, обратного осмоса, электрохимический и некоторые другие, которых я вообще не касался по причине редкости, дороговизны или трудности использования в домашних условиях. Все указанные методы не свободны от недостатков, а именно:
1. Если не принять специальных мер, фильтр может вместе с вредными примесями забрать из воды полезные минеральные добавки – соли натрия, магния, калия и кальция.
2. В конце ресурса, когда фильтрующий материал сильно забит вредными химическими примесями и микроорганизмами, задержанными в процессе многодневной эксплуатации, фильтр может «слить» всю эту дрянь в ваш стакан. Производители ряда фильтрующих систем (например, компания «Аквафор») уверяют, что их уникальный сорбент убивает микрофлору и настолько прочно удерживает загрязнения, что такого не может случиться никогда: ни по истечении ресурса фильтра, ни тем более в начале эксплуатации. Другие производители (например, компания «Гейзер») вводят в свой фильтрующий материал серебро, чтобы уничтожить бактерии и вирусы или хотя бы предотвратить их размножение в фильтрующем материале. Вы можете доверять их заявлениям, но я бы советовал менять картриджи почаще, не доводя их до самого конца ресурса.
3. От залповых выбросов, когда бактерии или какое-либо вредное вещество содержатся в воде в концентрации, которая в десятки-сотни раз превышает ПДК, не спасет никакой бытовой фильтр. Возможно, он очистит 10–20 л воды, но после этого будет забит до отказа. Тогда вода польется из всех щелей корпуса. Залповый выброс – ситуация сравнительно редкая, и такую воду обрабатывать бытовым фильтром не стоит; лучше поберегите его ресурс, а питьевую воду купите в магазине. Для Петербурга характерны выбросы железа (в том числе когда вода застоялась в трубах). Вы это сразу заметите: вода идет желтая, ржавая.
Кроме всего сказанного выше, фильтр не должен насыщать воду веществами, входящими в материалы его конструкции. Это, а также необратимость захвата примесей и бережное отношение к полезным минералам – обязательства производителей фильтров перед нами, пользователями. Мы же, в свою очередь, должны понимать, что вечных фильтров не бывает, и должны эксплуатировать их в соответствии с инструкцией.
Классификация фильтров
Бытовые фильтры можно классифицировать по-разному, и с одной разновидностью классификации, по физико-химическому методу очистки, мы уже познакомились в предыдущем разделе. Но для нас удобнее другая классификация – та, которая непосредственно связана с потребительскими свойствами фильтров и отражает их размер, стоимость, долговечность и место размещения в квартире. Давайте рассмотрим такую классификацию и используем ее в дальнейшем при описании бытовых фильтров.
Насадка.Небольшой и недорогой (50–80 руб.) фильтр, который навинчивается на водопроводный кран только тогда, когда мы хотим запастись очищенной водой (рис. 3) . Несмотря на малые размеры, он может хорошо очищать воду, но его производительность (скорость течения струи) невелика (стакан в минуту), и ресурс небольшой – 300—1000 л (без учета возможной регенерации). Такие фильтры очень распространены, но их необходимо часто менять – раз в месяц (или два раза в месяц, в зависимости от потребностей вашей семьи).
Кувшинный фильтр.Он не прикрепляется к крану, а имеет конструкцию в виде изящно оформленной емкости. Сверху в ней расположена цилиндрическая вставка, внизу которой находится картридж (рис. 4) , очень похожий на фильтр-насадку. Во вставку наливают воду, и она, просачиваясь через картридж под действием силы тяжести, капает в нижнюю часть емкости. Производительность таких фильтров от 0,1 до 0,5–1 л/мин при ресурсе картриджа 100–400 л. Их цена колеблется от 200–300 руб. до 800—1000 руб. (более дорогие – фильтры «Брита» с индикатором смены картриджа). Кувшинные фильтры самые популярные; их не надо подсоединять к крану, их можно использовать на даче, и, наконец, они сравнительно недороги и красивы.
Читать дальшеИнтервал:
Закладка: