Адам Пиорей - Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма
- Название:Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма
- Автор:
- Жанр:
- Издательство:Лаборатория знаний
- Год:2019
- Город:Москва
- ISBN:978-5-0101-201-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Адам Пиорей - Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма краткое содержание
Для широкого круга читателей.
Человек 2.0. Перезагрузка. Реальные истории о невероятных возможностях науки и человеческого организма - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
И в самом деле, почти сразу же после того, как Хьюбел и Визель впервые продемонстрировали существование этих критических периодов, ученые начали искать пути для того, чтобы, подобно хакерам, «взломать» систему и сделать так, чтобы мозг взрослого человека вновь обрел ту пластичность, которую мы наблюдаем у детей. Некоторые даже предположили: если мы сумеем понять, почему критические периоды начинаются и завершаются («открываются» и «закрываются»), то сможем усовершенствовать процесс обучения и даже изобрести «обучающие таблетки».
С самого начала все решили, что главное здесь — добавить что-то такое в мозг: например, что-нибудь вроде стволовых клеток или факторов роста, о которых мы рассказывали в предыдущей главе. Может быть, залог успеха — регенерация? Ведь Стивен Бадилак и Гордана Вуньяк-Новакович добились того, чтобы заново росли клетки мышц и хрящей. Возможно, и с мозгом удастся проделать нечто подобное? Однако в последние годы ученые стали осознавать: для того, чтобы заново «начать» («открыть») критические периоды, важнее всего отнюдь не внести что-то дополнительное . Как ни странно, секрет здесь, судя по всему, кроется в умении что-то убрать .
Как мы уже знаем, нейрофизиологи долго считали непреложной догмой идею о том, что нейроны, которые дают импульс вместе, формируют друг с другом связь. Однако существует множество факторов, которые способны повышать или понижать вероятность активизации нейрона и, по-видимому, его связывания с соседями: во всяком случае, так полагает гарвардский нейробиолог Такао Хенш.
Хенш и некоторые его коллеги в последнее время обнаруживают: по мере старения нашего организма происходят биохимические процессы, создающие молекулярные «тормоза» для пластичности, резко уменьшая способность нейронов образовывать новые связи с соседями. Но эти молекулярные тормоза не препятствуют формированию вообще всех новых связей. Они лишь ослабляют воздействие веществ, которые, оказавшись в мозгу ребенка или одного из головастиков-альбиносов, так поразивших исследователей (мы уже кое-что рассказывали тут о подобных головастиках), либо способствуют более легкой активации нейронов, либо подталкивают нейроны к тому, чтобы более разнузданно завязывать новые отношения друг с другом.
С поведенческой точки зрения наш энтузиазм при виде новой модели грузовика или волшебного замка принцессы угасает с годами просто из-за того, что эти вещи больше не кажутся нам такими невиданными и необычными, какими они могут представляться трехлетнему ребенку. Но верно и то, что утрата детского энтузиазма отражается во вполне реальных структурных изменениях мозга.
«У ребенка эти системы естественным образом работают на более высоких оборотах, сталкиваясь практически с любыми впечатлениями, потому что дети заинтересованы в том, чтобы узнать, как работает мир, — поясняет Хенш. — Но по мере взросления эта новизна стирается — вероятно, нам всё это становится скучнее. На биохимическом уровне наши системы всё труднее вовлекаются во взаимодействия!».
«Однако, — подчеркивает Хенш, — это не значит, будто такая пластичность совсем угасает». Когда мы глубоко погружены в какое-то занятие (например, в какую-нибудь из видеоигр для «тренировки мозга»), те области мозга, которые регулируют внимание и концентрацию, могут затопить другие участки мозга особыми веществами (нейромодуляторами), которые повышают вероятность активации нейронов, находящихся на этих участках. Иными словами, нейромодуляторы переводят эти нейроны в режим повышенной готовности — готовности откликнуться на импульсы, которые будут подавать окрестные нейроны. Безграничный энтузиазм Пэт Флетчер и ее глубокая сосредоточенность, все эти долгие часы практического освоения системы «vOICe», несомненно, мобилизовали многие из доступных ее организму нейромодуляторов. Со временем в ее мозгу сформировались новые связи. Это стало триумфом ее любознательности, концентрации, силы воли.
Однако выясняется, что, по мере того как мы становимся старше, наш организм начинает вырабатывать соединения, а иногда и строить физические структуры, подавляющие эффект этих модуляторов. Они могут убаюкать некоторые популяции нейронов, введя их в состояние летаргии или просто незаинтересованности. Пережившие инсульт могут научиться восстанавливать утраченные функции. Пэт Флетчер может научиться видеть ушами. Но это битва против заведомо более сильного противника — против встроенной в зрелый организм склонности защищать уже существующую инфраструктуру, которая годами медленно и целенаправленно складывалась и которая очень дорого обошлась организму.
Один из поворотных моментов, побудивших исследователей заподозрить всё это, наступил в начале 2000-х, когда итальянский биолог Ламберто Маффеи. решил воспользоваться в нейрофизиологии некоторыми идеями и подходами регенеративной медицины.
Ученые уже несколько столетий недоумевали, почему наш организм умеет регенерировать периферические нервы тела, однако не может заново отращивать аксоны, способные передавать электрические импульсы к конечностям — от головного мозга по позвоночнику (т. е. по спинному мозгу). То, что эту тайну никак не удавалось разгадать, обрекало тысячи пострадавших от повреждений спинного мозга (например, актера Кристофера Рива) на жизнь в инвалидном кресле.
В 90-е годы и в начале 2000-х некоторые ведущие специалисты по регенеративной медицине начали приближаться к ответу по крайней мере на один из вопросов, касающихся этой проблемы. Как выясняется, при взрослении организм вырабатывает белки под названием ХСПГ (хондроитинсульфатпротеогликаны), которые затрудняют рост зрелых аксонов. У здоровых взрослых эти молекулы играют важную роль — сигнализируют, что организм созрел и ему следует перестать меняться, что необходимая структура уже заняла свое место и теперь ее следует защищать, чтобы она сохраняла сложившийся вид.
Эти молекулы имеют важное значение и для защиты организма в случае повреждений.
Но когда эти аксоны оказываются перерезаны (как произошло с Кристофером Ривом, когда в 1995 г. он упал со скачущей лошади), присутствие ХСПГ становится опасной помехой. Может быть, если бы ученые нашли способ разрушать эти соединения, аксоны начали бы расти снова? Создав ряд ферментов, которые способствуют разложению ХСПГ, ученые провели эксперименты на парализованных крысах и сумели показать, что организм этих крыс действительно начинает отращивать аксоны заново.
Маффеи задумался: может быть, такой же механизм задействован и в головном мозге? В конце концов, клетки мозга, вовлеченные в зрительное и слуховое восприятие (и вообще во все когнитивные функции [относящиеся к познанию и восприятию мира]), тоже полагаются на аксоны в своей работе. Маффеи проделал такой же эксперимент, который Хьюбел с Визелем ставили на котятах: он плотно зашил подопытной крысе один глаз, а второму глазу позволил развиваться нормально. Как и в случае котят Хьюбела и Визеля, зрение этой крысы оставалось существенно поврежденным даже после того, как экспериментатор снял швы.
Читать дальшеИнтервал:
Закладка: