Уильям Байнум - Краткая история науки [litres]
- Название:Краткая история науки [litres]
- Автор:
- Жанр:
- Издательство:Литагент 5 редакция «БОМБОРА»
- Год:2019
- Город:Москва
- ISBN:978-5-04-091314-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Байнум - Краткая история науки [litres] краткое содержание
Краткая история науки [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Во вселенной Эвклида параллельные линии не могут пересечься никогда, и это предполагает, что пространство плоское. Сумма углов треугольника всегда 180 градусов. Но если вы измерите углы треугольника, нарисованного на шаре, на его выпуклом боку, то это правило окажется нарушено. И если пространство само по себе искривлено, то нам требуются иные математические средства для того, чтобы иметь с ним дело.
Приняв блестящую работу Эйнштейна как истину, физики и космологи обрели простор для новых мыслей.
И если та революция, которую вызвали его открытия, оказалась большей частью теоретической, то второе глобальное открытие имело вполне практическое основание. Базировалось оно на наблюдениях, большей частью сделанных американским астрономом Эдвином Хабблом (1889–1953). Его прославили в 1990 году, когда комический корабль вывел на орбиту нашей планеты телескоп, названный по имени этого великого ученого. Благодаря этому инструменту он бы смог открыть куда больше, чем из обсерватории Маунт-Уилсон в Калифорнии, где работал.
В двадцатые годы Хаббл сумел заглянуть дальше, чем любой из астрономов когда-либо, и показал, что нашей галактикой (Млечным путем) Вселенная вовсе не ограничивается. Она всего лишь одна из бесчисленных тысяч других галактик, раскинутых так далеко, как только могут видеть телескопы.
Космологи также помнят Хаббла по «постоянной Хаббла», особой величине, получившей от него имя (вы можете вспомнить постоянную Планка, названную по тому же принципу). Когда свет удаляется от нас, то спектр его волн смещается к красному концу видимого диапазона, и это называют «красным смещением». Если он приближается к нам, то волны сдвигаются к другому концу, и это именуют «синим смещением».
Этот эффект астрономы могут измерить с легкостью, и он производится в конечном счете тем же образом, как и изменение звучания поезда в зависимости от того, приближается он к нам или удаляется.
Хаббл обнаружил, что свет от дальних звезд имеет красное смещение, и чем дальше находится звезда, тем больше оно. Это сказало ему, что звезды удаляются от нас, и чем дальше они от Земли, тем быстрее. Вселенная расширяется, и выглядит все так, будто скорость расширения увеличивается.
Хаббл определил расстояния до звезд и величину красного смещения, и соотношение между тем и другим образовало прямую, когда он решил перенести данные на график. Отсюда и появилась постоянная Хаббла, о которой он написал в статье, опубликованной в 1929 году.
Эта величина дала космологам возможность рассчитать возраст нашей Вселенной.
Точное ее значение несколько раз изменялось, новые наблюдения позволили обнаружить еще более старые звезды, и красное смещение сейчас можно измерить более точно. Некоторые из древних звезд находятся в миллионах световых лет от нашей Земли, а световой год – это около шести триллионов миль (9 460 730 472 580 800 метров).
Требуется восемь минут, чтобы луч света добрался от Солнца до Земли, а если он отразится обратно, то можете совершить 32 тысячи путешествий в оба конца за год – другой способ представить, насколько большие числа входят в космологические расчеты. И огромные периоды времени тоже.
Часть того, что мы видим на ночном небе – свет, начавший путь очень долгое время назад от звезд, к данному моменту уже погасших. Чтобы получить идеально точное значение постоянной Хаббла, мы должны знать, на каком расстоянии от нас расположены удаленные звезды и галактики. Но пусть даже мы определяем ее неточно, она позволяет нам узнать, насколько долго шел этот свет, и каков возраст Вселенной, как давно случился Большой взрыв.
Теорию Большого взрыва популяризовал в 40-х годах Георгий Гамов (1904–1968). Был он колоритный физик, родился в России, но перебрался в Америку в тридцатые годы. Обладатель удивительно творческого ума, он увлекался не только физикой, но и теорией относительности и молекулярной биологией.
Вместе с коллегой он на микроуровне занимался тем, что исследовал, как ядро атома испускает электроны (бета-частицы). А на макроуровне Гамов изучал процесс формирования туманностей, исполинских облаков из горячих частиц и космической пыли. Его гипотеза Большого взрыва, появившаяся в 1948-м, отличалась от других и опиралась на знания относительно мельчайших составляющих атома, скомбинированные с моделью того, что могло происходить во Вселенной в самом начале.
Во-первых, составляющие: частицы и силы.
В конце 40-х этот раздел физики получил название квантовой электродинамики. Одним из людей, помогших вдохнуть в него смысл, оказался американский физик Ричард Фейнман (1918-88). Он знаменит благодаря диаграммам, которые он рисовал (иногда на ресторанных салфетках), чтобы объяснить свои теории и расчеты, и сдвоенным барабанам-бонго.
Фейнман получил Нобелевскую премию в 1965 году, в первую очередь за работы по квантовой электродинамике, обеспечившие сложный математический аппарат для объяснения того, как взаимодействуют на микроуровне мельчайшие частицы и силы.
После окончания Второй мировой физики продолжили разгонять атомы и частицы во все более мощных ускорителях. Ускорители могли разложить атомы на субатомные частицы, и это нечто противоположное процессу, имевшему место несколькими мгновениями позже Большого взрыва.
Сразу после него, когда началось охлаждение, принялись формироваться строительные блоки материи. Из частиц постепенно возникли атомы, а из атомов элементы, и в конечном счете дело дошло до звезд и растений.
Как учит нас эйнштейновское E = mc 2, на высочайших скоростях – около скорости света – в ускорителях масса большей частью превращается в энергию. Физики обнаружили, что разогнанные почти до предела частицы способны на удивительные вещи. Электрон появляется из ускорителя неизменившимся, и он принадлежит к лептонам, особой группе фундаментальных частиц. Зато протон и нейтрон, судя по всему, состоят из более мелких частиц, именуемых кварками.
Их существует несколько разновидностей, и каждая обладает особым зарядом. Комбинируясь по три, они образуют либо нейтрон, либо протон.
Существует четыре базовых силы во Вселенной, и попытка разобраться, как они связаны между собой, стала одним из величайших научных предприятий двадцатого века. Гравитация – слабейшая из этих сил, но зато она действует на бесконечное расстояние. Понять ее до конца мы до сих пор не смогли, путь даже над ее загадками ученые бьются со времен ньютонова яблока. Электромагнетизм вовлечен во множество явлений природы, он держит электроны на орбитах в пределах атома и в качестве дневного света приносит нам новость о том, что солнце еще светит.
Еще в пределах атома имеются «сильное взаимодействие» и «слабое взаимодействие». Эти две силы скрепляют частицы в границах атомного ядра.
Читать дальшеИнтервал:
Закладка: