Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта

Тут можно читать онлайн Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Corpus, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Макс Тегмарк - Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта краткое содержание

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - описание и краткое содержание, автор Макс Тегмарк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
“Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта” – увлекательная научно-популярная книга, вторая книга Макса Тегмарка, физика и космолога, профессора Массачусетского технологического института. В ней он рассматривает возможные сценарии развития событий в случае появления на Земле сверхразумного искусственного интеллекта, анализирует все плюсы и минусы и призывает специалистов объединить свои усилия в борьбе за кибербезопасность и “дружественный” искусственный интеллект.

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - читать онлайн бесплатно ознакомительный отрывок

Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Макс Тегмарк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если такие ограничения вызывают у вас приступы космической клаустрофобии, могу вас поздравить: у вас еще есть спасительная лазейка! В моих вычислениях предполагалось, что темная энергия не меняется со временем, что в общем-то соответствует имеющимся измерениям. Но, тем не менее, у нас пока еще нет никаких намеков, чем бы таким могла оказаться темная энергия на самом деле, и поэтому пока остается призрачная надежда, что она со временем может рассосаться (как должна была поступить подобная темной энергии субстанция, предположение о существовании которой нам необходимо, чтобы объяснить инфляцию), и когда это случится, ускорение должно будет уступить место замедлению, потенциально давая возможность будущим формам жизни расселяться по галактикам, не ограничивая себя.

Как быстро мы сможем расти?

Выше мы исследовали вопрос, сколько галактик может быть заселено, если мы будем распространяться во все стороны со скоростью света. Общая теория относительности говорит, что перемещаться в пространстве со скоростью света ракеты не могут, это потребовало бы бесконечно большой энергии. Но как же быстро смогут наши ракеты лететь на практике? [46] Космическая математика на этот счет предельно ясна: если цивилизация расширяется в расширяющемся пространстве не со скоростью света c , а с какой-то меньшей скоростью v , то число галактик, где она сможет расселиться, уменьшается в пропорции ( v/c ) 3 . Таким образом, цивилизации-копуши будут строго наказаны! Той, которая расширяется в 10 раз медленнее, достанется в 1000 раз меньше галактик.

Ракета “Атлас V”, выводившая за пределы земной атмосферы автоматическую межпланетную станцию NASA New Horizons, когда та начинала свой путь к Плутону, достигла к моменту выключения двигателей гелиоцентрической скорости в 100 000 миль в час (это соответствует 45 километрам в секунду), а запланированный на лето 2018 года запуск солнечного зонда Solar Probe Plus подразумевает даже большие скорости: приближаясь к Солнцу, зонд должен будет разогнаться вчетверо быстрее, но даже эта скорость не превысит жалкой 0,1 % от скорости света. Квест ради обретения все лучших и быстрых ракет длился все прошлое столетие, и ему посвящена обширнейшая и увлекательнейшая литература. Почему же так трудно разогнаться хоть чуточку больше? Две основные проблемы современных ракет заключаются, во‐первых, в том, что большую часть своего топлива им приходится тратить на то, чтобы разогнать до нужной скорости все остающееся топливо, а во‐вторых, в том, что это топливо безнадежно неэффективно: как показано в табл. 6.1, часть массы, превращающейся в энергию, для бензина не намного больше 0,00000005 %. Наиболее очевидное направление улучшений – это переход на более эффективное топливо. Например, Фримен Дайсон с коллегами работал над проектом NASA “Орион”, цель которого заключалась в том, чтобы взорвать 300 тысяч атомных бомб за десять дней и разогнать до 3 % скорости света космический корабль – достаточно большой и вместительный: в ходе путешествия продолжительностью в век находящиеся на нем люди могли бы достичь другой звездной системы {82} 82 В этом ролике показан безъядерный прототип, приводимый в движение взрывами бомб и разработанный в рамках проекта “Орион”. Он иллюстрирует идею ядерных взрывов в качестве ракетного двигателя: https://www.youtube.com/watch?v=E3Lxx2VAYi8 . Исследовалась и возможность использовать в качестве топлива антиматерию: в сочетании с обычной материей она обеспечивает близкую к 100 % эффективность.

Еще одна популярная идея заключается в том, чтобы построить ракету, которой не надо нести топливо на себе. Например, межзвездное пространство – далеко не вакуум, в нем много случайным образом рассеянных ионов водорода (то есть, попросту говоря, протонов, которые представляют собой атом водорода, лишившийся своего единственного электрона). Это подтолкнуло в 1960 году физика Роберта Буссарда к мысли о создании двигателя, получившего название “прямоточного межзвездного двигателя Буссарда”: он должен был собирать по пути эти рассеянные ионы и использовать их в качестве топлива в бортовом термоядерном реакторе. Хотя в последние годы появились определенные сомнения в том, что эту идею удастся осуществить на практике, есть другая идея, которая может быть реализована высокотехнологичной космической цивилизацией, – лазерный серфинг.

Рис. 6.8 иллюстрирует проект лазерного паруса, с которым в 1984 году выступил Роберт Форвард, тот же самый физик, который предложил статиты, обсуждавшиеся нами в связи со сферой Дайсона. Так же как молекулы воздуха ударяются о поверхность паруса парусного судна, так и частицы света (фотоны), ударяясь о поверхность зеркала, толкают его вперед. Направив луч мощного питаемого Солнцем лазера на поверхность ультралегкого паруса, установленного на космическом корабле, мы можем использовать энергию нашего Солнца для ускорения ракеты до больших скоростей. Но как потом остановиться? Этот вопрос ускользал от моего внимания до тех пор, пока я не прочитал блестящую статью Форварда: как показано на рис. 6.8, внешний круг паруса отделяется и перемещается перед кораблем, отражая лазерный луч назад и замедляя и сам корабль, и его меньший парус {83} 83 Учебное введение в принцип действия лазерного паруса: http://www.lunarsail.com/LightSail/rit-1.pdf . Форвард провел вычисления, показавшие, что таким образом люди могли бы слетать к ближайшей к Солнцу звездной системе α Центавра всего лишь за сорок лет. А уж после этого можно строить настоящую большую лазерную систему, позволяющую прыгать от звезды к звезде по всему Млечному пути.

Рис 68 Проект космического корабля с лазерным парусом разработанный - фото 50

Рис. 6.8

Проект космического корабля с лазерным парусом, разработанный Робертом Форвардом для полета к звездной системе α Центавра в 4 световых годах от нас. Сначала мощный лазер в нашей Солнечной системе разгоняет корабль, создавая радиационное давление на лазерном парусе. Для торможения во время прибытия к месту назначения внешняя часть паруса открепляется и начинает отражать свет обратно в направлении корабля.

Но зачем останавливаться на этом? В 1964 году советский астроном Николай Кардашев предложил градуировать цивилизации по количеству энергии, которую они могут использовать по своему произволу. Освоению энергии планеты, звезды (с помощью сферы Дайсона, скажем) и галактики соответствуют типы I, II и III по шкале Кардашева. Его последователи предположили, что типу IV должна соответствовать цивилизация, освоившая энергию всей Вселенной. С тех пор мы кое-что еще узнали, и в этом есть своя хорошая и своя плохая сторона для амбициозных форм жизни. Плохая новость состоит в открытии темной энергии, которая, как мы видели выше, сужает нам зону достижимости. Хорошая новость – это радикальный прогресс искусственного интеллекта. Даже такие оптимистические визионеры, как Карл Саган, рассматривали перспективу достижения человеческими существами других галактик как практически безнадежную, принимая во внимание нашу человеческую склонность умирать в течение уже первого столетия путешествия, которому, вероятно, суждено продлиться не один миллион лет, даже если перемещаться со скоростью близкой скорости света. Не желая отказываться от своей затеи, Саган предлагал замораживать астронавтов для продления им жизни, замедлять их старение околосветовыми скоростями, отправлять их большими сообществами, рассчитывая, что путешествие продлится на протяжении жизней десятков тысяч поколений – это больше, чем их сменилось за время земной жизни людей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта отзывы


Отзывы читателей о книге Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x