Коллектив авторов - Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной [litres]
- Название:Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной [litres]
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:М.
- ISBN:978-5-17-110828-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной [litres] краткое содержание
В этой книге собраны лучшие статьи ведущих авторов журнала New Scientist. Здесь вы найдете описание современной физической картины мира и интервью с самыми известными физиками, в которых они ответят на самые неожиданные вопросы.
Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Странно знакомые
Придумывание новых частиц для объяснения недостающей массы Вселенной завело нас в никуда. Быть может, темная материя – это хорошо замаскированная обычная материя?
В июле 2015 года неожиданная гостья посетила Большой адронный коллайдер ЦЕРНа. Названная пентакварком, эта необычная частица представляет собой совершенно новый способ собрать воедино основные строительные кирпичики вещества. Это событие прозвучало приятной мелодией для ушей Гленна Старкмана, физика-теоретика из Университета Кейс Вестерн Резерв в Кливленде (штат Огайо, США). Он выдвинул смелую идею: во Вселенной существуют другие разновидности обычной материи, и их вполне достаточно, чтобы сыграть роль неуловимой темной материи.
Чтобы сформировать материю, которая нас окружает, элементарные частицы собираются в определенные стандартные конфигурации. Кварки группируются по трое и образуют составные частицы, известные как барионы, в том числе протоны и нейтроны, входящие в состав атомных ядер. Нам также известны эфемерные комбинации кварка и антикварка, называемые мезонами.
Но кварки – создания изворотливые и из-за особенностей связывающего их сильного ядерного взаимодействия в одиночку по Вселенной не плавают. Когда расстояние между кварками мало, эта связывающая сила слаба. Но как только расстояние возрастает, сила увеличивается, притягивая кварки друг к другу. Сильное взаимодействие зависит и от других причин, и физики настойчиво стараются понять в деталях, как кварки образуют мезоны и барионы.
Эта неопределенность привела к предположениям, что могут существовать другие формы материи. Еще в начале 1980-х годов физик и математик Эдвард Виттен из Принстонского университета предположил, что легкие кварки могут вступать в необычные комбинации со своими более тяжелыми «двоюродными братьями», такими как странные кварки (рис. 6.4). Эти кварки могут вырастать в большие аморфные пузыри, собирая все больше и больше новых частиц в небольшом объеме. Виттен назвал их «кварковые самородками». Брайан Линн, физик-теоретик из Университетского колледжа Лондона, и его коллеги позднее распространили эту гипотезу для объяснения других структур, таких как «странная барионная материя» и «хиральные жидкие капли» [4] Хиральность (от др.-греч. χειρ – рука) – свойство молекулы не совмещаться в пространстве со своим зеркальным отражением. – Прим. пер .
.

Рис. 6.4. В обычном веществе связано 2–3 кварка. Сверхмассивные частицы, состоящие из множества кварков, могли бы претендовать на роль неуловимой темной материи
Такие экзотические сгустки из знакомых нам элементарных частиц будут плотными, как нейтронные звезды – одна чайная ложка вещества, из которого они состоят, весит столько же, сколько приличная по размерам гора. Исследователи назвали их «макросы»; их масса, если они обнаружатся, будет измеряться не теми ничтожно малыми величинами, как у обычных элементарных частиц, а килограммами и тоннами. Макросы не должны вступать в реакции ядерного синтеза и поэтому не должны светиться. Они слишком малы и практически не должны отражать или поглощать какой бы то ни было свет. Можно сказать, что это частицы-невидимки.
Исходя из этих предположений, можно подумать, что найден идеальный кандидат на роль темной материи. Тем не менее физики скептически отнеслись к этой идее. На это есть две причины:
1. Если макросы являются компактными объектами наподобие коричневых карликов или черных дыр и по массе сравнимы с Солнцем, тогда их должно быть больше, чем видимых звезд. Только в этом случае они смогут быть ответственными за те эффекты, которые сейчас традиционно объясняются темной материей. Но тогда макросы отклоняли бы свет, идущий к Земле от звезд, то есть создавали бы эффект гравитационного линзирования.
2. Если бы ядерное вещество распределялось тонким «ковром» по всей Вселенной, оно взаимодействовало бы с самим собой и другим веществом, затрудняя процесс образования галактик в том виде, в как мы его знаем.
Ответ Старкмана на эти возражения заключается в следующем. Макросы вовсе не обязаны иметь слишком большую массу и повсеместно приводить к эффекту гравитационного линзирования; не должны они и «размазываться» тонким слоем повсюду, вступая во взаимодействие с чем попало. Они могут группироваться в шариках среднего размера, ни слишком больших, ни слишком маленьких, что вполне согласуется с существующими космологическими наблюдениями.
Вооруженные этой идеей, Старкман с коллегами принялись за поиски макросов средних размеров. Вначале они попытались понять, где могли появляться макросы с разрешенной наименьшей массой. Может быть, они оставили свой след в минералах, погребенных в недрах Земли, или на пластиковых щитах космической станции «Скайлэб», установленных специально для поимки рожденных в космосе частиц? Так и не найдя нигде ожидаемых сигналов, Старкман сделал вывод, что разрешенные массы макросов должны находиться в диапазоне от 50 граммов до массы горы Эверест.
Ученый Дэвид Джейкобс из Кейптаунского университета в Южной Африке, работающий над проектом вместе со Старкманом, надеется «услышать», как макросы пролетают в океане. Для этого он использует гидрофоны, которые применяются для изучения повадок китов или для отслеживания незаконно проводимых ядерных испытаний. Кроме того, в поисках макросов он планирует исследовать данные детекторов космических лучей: влетая в атмосферу Земли, макросы должны рождать характерный световой сигнал.
Но удача может улыбнуться и немного дальше от дома. Последняя экспедиция «Аполлона» оставила на Луне четыре сейсмометра. Среди прочего они могут зафиксировать и следы макросов. Эти сейсмометры достаточно примитивны; геологи-планетологи вынашивают планы по замене их на более совершенные приборы. Брюс Банердт из Лаборатории реактивного движения НАСА в Пасадене (штат Калифорния, США) и его коллеги хотят установить на Луне более чувствительную сеть лунных сейсмографов.
Открытие этих мельчайших эффектов имело бы грандиозное значение. Может оказаться, что экзотические частицы, выдуманные физиками и являющиеся предметом их интенсивного поиска, просто не существуют, а обычные элементарные частицы, которые мы знаем и любим, могут сочетаться друг с другом самым причудливым образом.
Охотники за темной материей находятся на распутье в поисках ответа на вопрос: «Что же такое и как это работает?» До сих пор не существует никаких конкретных фактов, одни догадки и предположения.
Читать дальшеИнтервал:
Закладка: