Алексей Благирев - Big data простым языком [litres]

Тут можно читать онлайн Алексей Благирев - Big data простым языком [litres] - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент АСТ, год 2019. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Благирев - Big data простым языком [litres] краткое содержание

Big data простым языком [litres] - описание и краткое содержание, автор Алексей Благирев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Наш телефон знает о нас больше, чем мы думаем. Он умеет собирать и анализировать информацию о том, как мы передвигаемся по городу, какие посты лайкаем и какими приложениями пользуемся. Он сообщит о пробках и поторопит на работу, чтобы мы не опоздали; подберет музыку под наше настроение и составит список персональных рекомендаций, чем можно занять себя в течение дня. Телефон – больше не устройство, по которому звонят, это уже средство управления окружающим нас миром. Незаметно мы окружили себя такими интерфейсами, которые создают невидимый барьер между человеком и окружающей средой. Планирование, управление, коммуникация, все теперь строится через эти программы и девайсы. Даже человеческие отношения.
Но насколько глубока кроличья нора? Каждому предстоит разобраться в этом самому. Эта книга поможет донести основные принципы проектирования и создания таких интерфейсов управления бизнесом, обществом и окружающим нас миром посредством Больших данных. Читайте, наслаждайтесь и помните: сожжение книг противозаконно.

Big data простым языком [litres] - читать онлайн бесплатно ознакомительный отрывок

Big data простым языком [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Благирев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Развиваются решения Edge Computing

Одной из новых технологий, которые могут помочь компаниям справиться с Большими данными IoT, являются вычисления на узлах (машинах), близких к источникам данных.

Это называется Edge Computing (англ. edge – «край»). В Edge Computing Big Data-анализ происходит очень близко к устройствам и датчикам IoT, а не в центре обработки данных или облаке. Компаниям это дает существенные преимущества. У них становится меньше данных, передающихся по их сетям. В результате, можно повысить производительность и сэкономить на стоимости облачных вычислений в сети. Это позволяет организациям удалять данные IoT, которые являются ценными в течение ограниченного периода времени, что снижает затраты на хранение и инфраструктуру. Edge Computing также может ускорить процесс анализа, снижая time-to-market для аналитики.

Возрастает ценность людей

Для IT-специалистов рост Big Data-аналитики, вероятно, будет означать высокий спрос и высокие зарплаты для тех, кто смог быстро набрать опыт по работе с Big Data-технологиями. По данным IDC: «Только в США в 2018 году будет 181000 вакансий, связанных с аналитикой, и в пять раз больше позиций, требующих соответствующих навыков управления и интерпретации данных».

Появился целый новый рынок труда со множеством профессий и специализаций, не имеющий пока четких критериев для отбора и поиска специалистов, за исключением рейтингов Kaggle или участием в тех или иных исследовательских проектах. Большим риском в предстоящем развитии новых профессий по работе с данными является в том числе их оторванность от понимания бизнес-специфики, так что специалисты, которые будут совмещать в себе понимание как IT, так и бизнес-составляющей, будут получать высокие зарплаты.

Существенную роль сыграет постепенное появление CDO (Chief Data Officer) в команде руководства большинства компаний. Если проанализировать публичные профили известных CDO, то большинство из них сегодня пришло к этой роли из бизнеса через трансформацию своей компании, сохранив при этом определенный уровень компенсаций и ожиданий.

Растет популярность Self-Service

Поскольку стоимость найма экспертов возрастает, многие организации будут искать инструменты, которые позволят обычным бизнес-пользователям удовлетворять свои потребности в аналитике данных. Ранее IDC предсказывал, что «инструменты для визуальной работы с данными будут расти в два с половиной раза быстрее, чем рынок бизнес-аналитики (BI). К 2018 году инвестиции в этот инструмент Self-Service конечных пользователей станут обязательными для всех предприятий». Несколько поставщиков уже запустили инструменты для аналитики Больших данных с такими возможностями. Эксперты ожидают, что тенденция продолжится и дальше. IT, скорее всего, будет менее вовлечен в процесс, так как большая аналитика данных относится, в первую очередь, к предметной области, которой занимаются бизнес-пользователи.

Рост объемов данных продолжится

Сегодня компаниям нужно все больше знать о своих продуктах и пользователях и, как следствие, успевать адаптироваться к изменяющимся требованиям со стороны рынка.

Даже промышленный сектор стал активно переходить в область использования аналитики и работы данными. Так, промышленная компания по разработке программного обеспечения Uptake быстро достигла капитализации в один миллиард долларов, получив звание единорога. Суть ее предложения – помогать промышленным компаниям оптимизировать свой бизнес и продукты на основе инсайтов, полученных из анализа при работе с промышленными данными. Компании удалось построить решения для различных индустрий, начиная от транспорта и добычи, заканчивая использованием аналитики для альтернативных источников энергии (ветер и так далее).

Согласно исследованиям [152] . рост данных для аналитики в реальном времени составит около тридцати процентов в ближайшие два года.

Работа с большими объемами и потоками данных – больше не прерогатива крупных компаний с большими бюджетами, теперь она доступна и среднему, и малому бизнесу. Это стало результатом популярности (и, как следствие, появлению простых упакованных решений) технологий Big Data и уменьшению их стоимости.

In-memory решения

Одна из технологий, которую компании исследуют и начинают применять в попытках ускорить обработку Больших данных, – это in-memory решения. В традиционных БД данные хранятся в системах хранения, оборудованных жесткими дисками или твердотельными накопителями (SSD). In-memory технология хранит данные в ОЗУ, а это во много раз быстрее. В отчете Forrester Research [153] . говорится, что рост количества данных в in-memory решениях будет составлять 29, 2 процента в год.

Конец Big Data

Термин Big Data постепенно отмирает. Он охватывает слишком много тем.

Развивается и специализация. Скоро говорить: «Я работаю в Big Data» будет так же странно, как и «Я работаю с компьютером». Уже сейчас существует множество дисциплин – от машинного обучения, сбора и управления данными до их безопасности. Эти дисциплины имеют между собой мало общего или вообще не связаны, но все равно относятся к Big Data. Кроме того, Big Data сейчас проникает абсолютно во все сферы жизни, и выделять ее в отдельную отрасль становится бессмысленным. Промышленность, IT, образование и даже дизайн сейчас используют или начинают использовать инструменты Big Data для сбора и анализа данных, появляющихся в процессе цифровизации.

Послесловие

Сегодня данные стали (или становятся) важной частью нашей жизни. Сервисы и продукты становятся цифровыми.

Надеюсь, что эта книга помогла составить общее понимание о том, как работают системы Больших данных и для чего они вообще применяются.

Появляются новые инструменты и фреймворки, которые позволяют работать с данными максимально широкому кругу людей. И поэтому очень важно, чтобы все эти люди говорили на одном языке и хотя бы примерно представляли, как все это работает.

В этом смысле книга полезна как начинающим, так и уже сложившимся специалистам. Она будет интересна тем, кто задумывается о смене карьеры, и тем, кого своя карьера устраивает/кому просто любопытно.

Мир меняется, и сейчас навык анализа данных требуется и юристам, и маркетологам, и множеству других профессий. Во многих организациях сейчас идут кампании по продвижению data-driven культуры, но тут часто дело ограничивается только технической стороной – базовым обучением программированию, SQL и, может быть, вебинарами «Learning для чайников».

Но этого недостаточно. Золотой принцип аналитики – это «Garbage in – garbage out» [154] (англ.) «Мусор на входе – мусор на выходе». , что означает: никакие технические навыки не заменят умения понимать, откуда данные взялись, насколько им можно доверять и каковы границы их применимости.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Благирев читать все книги автора по порядку

Алексей Благирев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Big data простым языком [litres] отзывы


Отзывы читателей о книге Big data простым языком [litres], автор: Алексей Благирев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x