Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени
- Название:Тайны квантового мира: О парадоксальности пространства и времени
- Автор:
- Жанр:
- Издательство:АСТ-Пресс Книга
- Год:2010
- Город:Москва
- ISBN:978-5-462-00972-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени краткое содержание
Для широкого круга читателей.
Тайны квантового мира: О парадоксальности пространства и времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Пример с любимыми многими кино- и телезрителями отважными расследователями жгучих тайн современности, заключенных в Х-файлах, Б. Грин снабжает следующим комментарием:
«Две частицы могут быть так переплетены квантовыми эффектами, что их хаотичный выбор между одним или другим свойством скоррелирован: точно как каждая из инопланетных сфер случайно выбирает между красным и синим, а затем каким-то образом цвета, выбранные сферами в коробочках с одинаковыми номерами, оказываются скоррелированными (обе мигают красным или обе мигают синим), свойства, выбранные случайно двумя частицами, даже если они удалены в стороны в пространстве, могут быть подобным образом совершенно упорядочены. Грубо говоря, хотя две частицы удалены друг от друга на большое расстояние, квантовая механика показывает: что бы ни сделала одна частица, другая сделает связанную вещь.
В качестве конкретного примера: если вы носите солнечные очки, квантовая механика показывает, что с вероятностью 50: 50 отдельный фотон — вроде того, который отразился от поверхности озера или от асфальтовой дороги, — сможет пробраться сквозь ваши уменьшающие яркость поляризованные линзы: когда фотон достигает стекла, он случайным образом „выбирает“ между тем, отразиться назад или пройти насквозь. Поразительная вещь в том, что фотон может иметь партнера-фотон, который мчится в милях отсюда в противоположном направлении, и, однако, когда он столкнется с той же вероятностью 50: 50 пройти сквозь другие поляризованные линзы солнечных очков, он каким-то образом повторит все, что бы ни сделал начальный фотон. Даже если каждый результат определен случайным образом и даже если фотоны разнесены в пространстве, если один фотон пройдет насквозь, так же сделает и другой. Это разновидность нелокальности, предсказанная квантовой механикой».
Итак, законы квантового мира не только по форме, но и по самой своей глубинной сути принципиально отличаются от классической механики, воплощенной в том, что мы называем здравым смыслом повседневной реальности. Уже тысячелетия астрономы наблюдают за траекториями небесных тел, но это, конечно же, никак не влияет на эллиптичность планетарных орбит. Однако, наблюдая за электроном, мы обязательно изменим его энергетическое состояние и волновую функцию, так что любое измерение полностью и неконтролируемым образом изменит общее состояние микрочастицы. Единственный выход для физиков-экспериментаторов — это выполнить измерения над очень большим числом электронов (в идеале такое количество одинаковых микрообъектов должно практически стремиться к бесконечности), тогда, и только тогда, можно со сколь угодно высокой точностью узнать, какой же будет исход эксперимента над иными микрочастицами, находящимися в тех же начальных условиях.
Именно здесь и пролегает связь между классической и квантовой физикой, ведь единичные одинаковые квантово-механические опыты приводят к разным результатам просто в силу принципиальной невозможности обеспечить для них совершенно одинаковые условия проведения, как это происходит в классической механике. Но достаточно большое множество одинаковых опытов над не менее существенным множеством одинаковых квантовых объектов (например, тех же электронов) обязательно в конечном итоге приведет к одинаковым результатам.
Как поразительно точно подметил в книге «Квантование в науке настоящего и будущего» А. С. Компанеец:
При этом самое удивительное то, что форма закономерности все же относится к отдельному объекту: в простейшем виде уравнению Шрёдингера удовлетворяет волновая функция одного электрона. В соответствии с этим каждый электрон вступает во взаимодействие с измерительным прибором, например с фотопластинкой, независимо от всех остальных. Фотопластинка, как и любой измерительный прибор, — объект классический, поэтому и можно зафиксировать точку попадания на нее отдельного электрона, не изменяя существенным образом состояния самой фотопластинки. Но сам электрон, попадая на фотоэмульсию, радикально изменяет свое состояние. На таких отдельных актах взаимодействия проявляется статистическая закономерность.

Эволюция электронно-вычислительной техники
КВАНТОВЫЕ КОМПЬЮТЕРЫ И КРИПТОГРАФИЯ
Проанализировав сложившуюся ситуацию в квантовой физике, знаменитый американский физик Ричард Фейнманвысказал идею, что подобные задачи должен решать особый квантовый компьютер. В своей известной статье «Моделирование физики на компьютерах» он убедительно показал, что необходимо разрабатывать принципиально иные вычислительные устройства.
Несомненно, что разработчикам квантовых вычислительных систем, основанных на квантово-механических эффектах микрочастичной запутанности, в конце концов удастся добиться впечатляющего параллелизма вычислений. И даже если правы скептики, предрекающие, что мощный квантовый компьютер так и не будет никогда построен, исследования в этой области прикладной квантовой физики вполне могут привести ко многим неожиданным открытиям.
Существует и еще одно совершенно фантастическое направление исследований, которое связано с конструированием квантовых нейрокомпьютеров. Пока еще в этом направлении наука делает только первые шаги, но все больше биофизиков и нейрофизиологов начинают обсуждать возможность существования некоего «квантового сознания».
Совершенно неожиданное применение нашла квантовая информатика в криптографии — искусстве создания и расшифровки разнообразных кодов. Основная трудность, с которой сталкиваются современные шифровальщики, состоит в обеспечении такого обмена шифровальными ключами между отправителем и получателем, при котором никто не может скопировать их. Наступление эры квантовой информатики, и в частности появление квантовых компьютеров, способных быстро производить невероятно трудное разложение числовых шифровальных кодов на простые множители, ознаменует крах многих криптографических схем. Но тут квантовая информатика преподнесла второй сюрприз, ознаменовавший возникновение еще одной научной отрасли знания — квантовой криптографии. Как оказалось, абсолютно секретную связь вполне реально создать, используя квантовые способы передачи информации. К примеру, чтобы «подслушать» шифровку, передающуюся отдельными фотонами (квантами) через оптоволокно, необходимо каждый квант поймать, измерить его состояние и только затем вновь послать адресату. Вся беда в том, что проделать эти манипуляции без нарушения состояния отдельных квантов и квантовой системы в целом невозможно. Такие системы связи позволяют безопасным способом осуществлять передачу секретного ключа практически на неограниченные расстояния. Они уже выпускаются и используются для нужд спецслужб при наземной передаче информации, вскоре планируется их вывод в космос для создания систем передачи сверхсекретной информации.
Читать дальшеИнтервал:
Закладка: