Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени
- Название:Тайны квантового мира: О парадоксальности пространства и времени
- Автор:
- Жанр:
- Издательство:АСТ-Пресс Книга
- Год:2010
- Город:Москва
- ISBN:978-5-462-00972-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени краткое содержание
Для широкого круга читателей.
Тайны квантового мира: О парадоксальности пространства и времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Как только шар оказался за деревянным заборчиком, вся внутренность треугольника заполнилась блеском слоновой кости.
— Видите! — обрадовался профессор. — Я ограничил положение шара размерами пространства, заключенного внутри треугольника, то есть какими-то несколькими дюймами. И в результате — значительная неопределенность в скорости, шар так бегает внутри периметра треугольника!»
Вернемся теперь к теории гравитации Эйнштейна, гласящей, что вблизи любого сгустка вещества или энергии искривляется пространство-время, а вместе с ним и траектории частиц, которые словно бы оказываются в гравитационном поле. Я тут не оговорился: именно «словно бы», ибо в ОТО Эйнштейна гравитационного поля в привычном нам понятии как бы и не существует, его заменяет искривление пространства-времени.
А что же тогда нам объясняют на школьных уроках физики? Вообще-то, говоря о гравитации Ньютона, школьные учителя (а часто и университетские профессора!) рассказывают нам о том, как мы воспринимаем с помощью понятия гравитационного поля истинную причину всемирного тяготения, кроющуюся в геометрии (математики говорят — топологии) нашего мира.
Зная координаты, скорости и массы, можно с помощью уравнений общей теории относительности вычислить искривления пространства-времени и определить влияние тяготения на траектории рассматриваемых тел. Соответственно, пустое релятивистское пространство-время является абсолютно ровным и гладким, представляя собой идеальную сцену для выступления вещества и энергии во вселенском спектакле. Проблема только в том, что для всех бесчисленных сценариев, которые постоянно предлагают теоретики, у Природы просто может не хватить ролей…

Черная дыра коллапсара
Хотя в настоящее время квантовые эффекты пренебрежимо малы, они играли важнейшую роль на начальных стадиях Большого взрыва. Ими же определяются процессы, протекающие в черных дырах. Поскольку гравитация связана с искривлением пространства-времени, квантовая теория гравитации будет теорией квантового пространства-времени. Она поможет физикам понять, из чего состоит пространственно-временная пена.
ТЕОРИЯ СТРИНГОВ
Однако на самые популярные, можно сказать даже — физически остромодные сценарии развития нашей действительности всегда есть большой спрос. Вот сейчас «звездами физической сцены», безусловно, являются те же суперструны. Конечно, физики-теоретики пока еще только «срежиссировали» первые серии грандиозного сериала под названием «Суперструнная квантовая гравитация». Тем не менее дальнейшее развитие сюжета обещает быть не менее захватывающим, чем в лучших образцах «мыльных опер».
Основная идея здесь состоит в том, что элементарные частицы — не точечные, а бесконечно тонкие одномерные объекты — квантовые стринги или суперструны. Для дотошных читателей заметим, что вначале была просто «теория струн», но потом к ней добавили некую «суперсимметрию» и теперь в основном обсуждают именно «теорию суперструн». Обширное семейство разнообразных элементарных частиц отражено множеством возможных форм колебаний струны. Это очень просто понять, всего лишь представьте, что каждая элементарная частица — это звук, а все вместе они составляют жизнеутверждающую и жизнепорождающую симфонию нашего мира. Как же столь бесхитростная теория описывает сложный мир частиц и их взаимодействий? Секрет в так называемой магии квантовых струн. Как только правила квантовой механики применяются к вибрирующей струне, вдоль которой колебания распространяются со скоростью света, у нее появляются новые свойства, тесно связанные с физикой элементарных частиц и космологией.
Изначально в теории струн видели очень весомого кандидата на долгожданную общую теорию всех частиц и сил. Однако после появления в начале семидесятых годов прошлого века теории сверхэлементарных кварков, быстро выросшей в целый раздел физики элементарных частиц, модель стрингов явно стала проигрывать объединяющей модели кварков.

Модель суперструн

Стринги и браны
В ходе глубокой перестройки основ суперструнной теории физики добавили к одномерным струнам их пространственные аналоги с большим числом измерений. Двумерные объекты стали называть мембранами, или 2-бранами, трехмерные — 3-бранами, структуры с размерностью p — p -бранами. Теория струн превратилась в теорию бран произвольной размерности — от 1 до 9. Однако одномерные струны все равно остаются главными: именно их вибрации и проявляют себя в виде элементарных частиц. А вот браны ограничивают свободу струнных движений, причем только струн со свободными концами.
НА ПУТИ К «ТЕОРИИ ВСЕГО»
Кварковая микрофизика носит название квантовая хромодинамика, поскольку связана с динамикой цветовых (хромо-) зарядов кварков. Она дает ученым эффективный способ описания сильных внутриядерных взаимодействий и прекрасно согласуется с экспериментальными данными, считаясь универсальной основой для фундаментальных объяснений микромира. Теория струн на фоне квантовой хромодинамики выглядит достаточно экзотично, не очень-то логически стройно и, самое главное, не имеет существенных экспериментальных подтверждений. Именно поэтому теорфизики долгое время не уделяли ей должного внимания. Затем мода на суперструнные построения вернулась, и их стали все чаще рассматривать как математический каркас для конструирования квантовой теории тяготения, как первый шаг в объединении всех фундаментальных взаимодействий в будущей «теории всего» ( рис. 18цв. вкл.).
На пути к этому, конечно же, возникнут многочисленные новые модели пространства и времени (впрочем, их и сейчас более чем достаточно!). Вполне возможно, что среди них будут и удачные модели, которые помогут разрешить важные загадки квантовой гравитации и космологии. Это грандиозная цель, и скорее всего для ее осуществления потребуется еще не одна научная революция, подобная той, что произошла в начале прошлого века. Уже сейчас «струнные» работы привели ко многим интересным результатам в математике, включая создание новых математических структур, а также инновационных идей и методов их решения. На последних конференциях, посвященных различным аспектам струнной теории, часто можно встретить физиков-теоретиков и математиков, совместно докладывающих свои исследования во многих областях математики, например в алгебраической геометрии.
Читать дальшеИнтервал:
Закладка: