Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени
- Название:Тайны квантового мира: О парадоксальности пространства и времени
- Автор:
- Жанр:
- Издательство:АСТ-Пресс Книга
- Год:2010
- Город:Москва
- ISBN:978-5-462-00972-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Олег Фейгин - Тайны квантового мира: О парадоксальности пространства и времени краткое содержание
Для широкого круга читателей.
Тайны квантового мира: О парадоксальности пространства и времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В классической физике Лагранж, Гук и Ньютон рассматривали окружающую природу как абстрактный мир бильярдных шаров с абсолютно точными пространственными координатами и скоростями.
Опыт показывает, что такое описание не всегда справедливо для микромира элементарных частиц. Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной Планка, которая называется также квантом действия и разбивает все окружающие потоки энергии на мельчайшие порции — кванты энергии. Обычно последние называют просто квантами и говорят, что энергия квантована. Отношение между классической и квантовой физикой наглядно иллюстрирует очень простой пример из геометрии. Как непрерывные линии и поверхности состоят из невидимых точек, так непрерывные процессы в природе квантуемы и состоят из квантов.
Впервые понятие квантов было введено в 1900 году выдающимся немецким физиком Максом Карлом Эрнстом Людвигом Планкомв работе, посвященной решению парадокса теплового излучения. Существовавшая в то время теория теплового излучения абсолютно черного тела (АЧТ), построенная на основе классической электродинамики и статистической физики, приводила к противоречию. Чтобы его разрешить, Планк предположил, что свет испускается не непрерывно (как это следовало из классической теории излучения), а определенными дискретными порциями энергии — квантами. Итак, попробуем приглядеться к одной из самых глубоких трещин на монументе классической физики.
В конце девятнадцатого века многие физики усиленно пытались найти распределение излучения абсолютно черного тела. Моделью АЧТ является замкнутая полость с небольшим отверстием. Главной особенностью АЧТ является то, что любое излучение, попавшее внутрь через узкую горловину, будет многократно отражаться от внутренней поверхности, прежде чем сможет выйти обратно. Хорошей моделью АЧТ служит обычная мартеновская печь с литовкой — отверстием для потока металла.
Вам наверняка доводилось видеть что-то похожее на черное тело. В очаге, например, случается, что несколько поленьев сложатся практически вплотную, а внутри них выгорит довольно большая полость. Снаружи поленья остаются темными и не светятся, в то время как внутри выгоревшей полости накапливаются жар (инфракрасное излучение) и свет, и, прежде чем вырваться наружу, эти лучи многократно отражаются от стен полости. Если заглянуть в щель между такими поленьями, вы увидите яркое желто-оранжевое высокотемпературное свечение, и оттуда на вас буквально полыхнет жаром. Просто лучи на какое-то время оказались пойманными в ловушку между поленьями.
Понаблюдаем за излучением мартеновской печи. После заправки металла, кокса и различных добавок для получения нужного сорта стали мартеновская печь начинает интенсивно разогреваться. При этом литовка (отверстие для слива расплава) светится сначала багряно-красным цветом, затем ярко-красным и наконец перед самым выходом металла — ослепительно белым.
Все законы теплового излучения в девятнадцатом веке были установлены именно для АЧТ, поскольку именно для них можно четко выделить зависимость светимости от температуры. Это понятно, ведь все волны после долгого блуждания внутри полости АЧТ выходят одинаковыми, как фарш из мясорубки!
Один из таких законов носит название закона Стефана — Больцмана по имени открывших его ученых и связывает энергию, испускаемую АЧТ, с четвертой степенью его температуры. Второй закон, получивший имя Вина, в честь австрийского физика, гласит, что чем выше температура АЧТ, тем короче длина его волны. Ну а поскольку длина световой волны растет от ультрафиолета (ему мы обязаны загаром) до инфракрасного света (им обогревают помещения и используют в приборах ночного видения), то при высокой температуре ослепительное белое сияние вроде бы должно постепенно сменяться фиолетовым свечением. Однако ни в мартеновских печах, ни в самых ярких кострах мы никогда не увидим подобного перехода. В чем же дело?
Через некоторое время интенсивность испускания и поглощения лучей внутри АЧТ уравниваются. Вот до этого момента поведение АЧТ остается еще достаточно понятным. Проблемы начинают возникать при попытках подсчитать энергию излучения, сохраняемую внутри абсолютно черного тела в равновесном состоянии. И скоро выяснились две вещи. Во-первых, чем выше волновая частота лучей, тем больше их накапливается внутри черного тела. Во-вторых, чем выше частота волны, тем большую энергию она несет и, соответственно, тем больше ее сохраняется внутри черного тела.
Напомним, что такое спектр излучения. Обычно мы называем спектром цветную полосу, образованную лучами света после прохождения через стеклянную призму. При этом надо уточнить, что свет по своей природе представляет собой электромагнитное излучение, или же электромагнитные волны, распространяющиеся посредством электромагнитных полей. Электромагнитные волны строго определенной длины (или частоты) называют монохроматическими, что можно перевести с латыни как «единоцветные».
Таким образом, спектр электромагнитного излучения — это разделение излучения таким образом, что по каждому направлению распространяется монохроматическая волна. Конечно же, вовсе не обязательно применять понятие «спектр» только к электромагнитному излучению. Общее определение гласит, что спектр — это совокупность частот (длин) волн, содержащихся в каком-либо излучении, или даже еще более общее, математическое: спектр — это совокупность значений какой-либо величины.
Нельзя не сказать еще несколько слов о роли столь значительного объекта, как спектр, в истории физики. Именно он часто играет роль проницательного детектива, исследующего с помощью своего замечательного метода — спектрального анализа — самые запутанные физические парадоксы и теории. На его счету раскрытие тайн звездного света и открытие нового элемента в атмосфере Солнца, он работает в школьных кабинетах физики и настоящих криминалистических лабораториях, управляет сверхчувствительными комплексами уникального оборудования на межпланетных автоматических станциях и помогает открыть секреты древней булатной стали.
Именно спектральный анализ излучения АЧТ привел к самым настоящим катастрофическим последствиям для всей классической физики. Согласно классической механике и теории электромагнитного излучения, созданной великим шотландским ученым Джеймсом Кларком Максвеллом, вся энергия АЧТ должна быть поделена между всеми волнами самой различной длины, заполняющими внутреннюю полость. Поскольку, согласно закону Вина, максимум энергии приходится на самую коротковолновую — ультрафиолетовую часть спектра, то все нагретые тела должны светить не красным или белым, а невидимым ультрафиолетовым светом. Естественно, что такой результат, полученный впервые знаменитым английским ученым лордом Релеем, грубо противоречил наблюдаемой действительности. Вместе эти заключения привели к немыслимому результату: энергия излучения внутри черного тела должна стремиться к бесконечности! Эта злая насмешка над законами классической физики была окрещена ультрафиолетовой катастрофой, поскольку высокочастотное излучение лежит в ультрафиолетовой части спектра. На самом деле закон Вина распространяется лишь на цвет, соответствующий максимальной яркости излучения, при этом предполагается, что в общем потоке присутствуют все цвета с большими длинами волн. При нагревании АЧТ цветовая гамма излучения расширяется в коротковолновую часть, естественно сливаясь при этом в единый цвет.
Читать дальшеИнтервал:
Закладка: