Рэймонд Смаллиан - Как же называется эта книга?
- Название:Как же называется эта книга?
- Автор:
- Жанр:
- Издательство:Мир
- Год:1981
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рэймонд Смаллиан - Как же называется эта книга? краткое содержание
Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.
Как же называется эта книга? - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
14. Шкура должна быть белой, так как принадлежит белому медведю, обитающему в Арктике — вблизи Северного полюса. Обычно ответ подкрепляют ссылкой на то, что медведь, о котором говорится в условиях задачи, должен стоять на Северном полюсе. Это лишь одна, но не единственная возможная ситуация. В каком бы направлении ни ступить из Северного полюса, двигаться всегда будешь на юг. Поэтому если медведь находится на Северном полюсе, а охотник — в 100 м к югу от него, то, пройдя 100 м на восток и обернувшись на север, охотник окажется лицом к Северному полюсу. Все это так, но, как я уже говорил, приведенное решение не единственно. Действительно, существует бесконечно много решений. Например, охотник может находиться на параллели длиной 100 м, а медведь — в 100 м к северу от него. Пройдя 100 м на восток, охотник опишет полную окружность вокруг полюса и вернется в исходную точку. Это второе решение задачи. Но охотник может находиться еще ближе к полюсу на параллели длиной 50 м. Пройдя 100 м, он дважды опишет полную окружность вокруг полюса и окажется в исходной точке. Но и это еще не все. Охотник может находиться на параллели длиной в 1/3 от 100 м. Трижды обойдя по параллели вокруг полюса, он также окажется в исходной точке. Поскольку аналогичное решение можно построить при любом положительном целом n, то на Земле существует бесконечно много мест, где могла бы разыграться сценка, описанная в задаче.
Разумеется, во всех этих решениях предполагается, что медведь, находившийся достаточно близко от Северного полюса, непременно должен быть белым медведем. Существует, однако, еще одна возможность, хотя она и весьма маловероятна: некий злонамеренный тип умышленно доставил на Северный полюс бурого медведя, чтобы «насолить» автору задачи.
15. Пятак и одна монета достоинством в 10 копеек. Одна монета (десятикопеечная) не пятак.
16. Как может покойник жениться на ком-нибудь?
17. Человек, живущий на двадцать пятом этаже, — лилипут и не может дотянуться до кнопки «25 этаж» на пульте лифта.
Один мой знакомый (о котором никак нельзя сказать, что он умеет мастерски рассказывать анекдоты) однажды рассказывал эту задачу-шутку в компании, где был и я. Начал он свой рассказ так: «В одном доме на двадцать пятом этаже жил лилипут…»
18. Правильнее было бы сказать, что желток желтый.
19. Поезда в момент встречи будут находиться на одинаковом расстоянии от Бостона.
20. Петухи не откладывают яйца.
21. Двадцать.
22. Несовпадения нет: полтора часа по продолжительности не отличаются от 90 минут.
23. Вряд ли стоит хоронить тех, кто уцелел в авиационной катастрофе!
24. Хирург был матерью Артура Смита.
25. К сожалению, я никак не могу припомнить название этой книги, но не беспокойтесь: рано или поздно я непременно вспомню, как же называется эта книга.
III. Рыцари и лжецы
А. Остров рыцарей и лжецов
Существует множество хитроумных задач об острове, населенном «рыцарями», всегда говорящими только правду, и лжецами, изрекающими только ложь. Предполагается, что каждый обитатель острова либо рыцарь, либо лжец. Мы начнем с одной хорошо известной задачи этого типа, а затем я приведу серию новых задач, которые придумал сам.
26
Итак, начнем с давно известной задачи. Трое жителей острова (А, B и C) разговаривали между собой в саду. Проходивший мимо незнакомец спросил у A: «Вы рыцарь или лжец?» Тот ответил, но так неразборчиво, что незнакомец не смог ничего понять. Тогда незнакомец спросил у B: «Что сказал A?» «А сказал, что он лжец», — ответил B. «Не верьте B! Он лжет!» — вмешался в разговор островитянин C.
Кто из островитян B и C рыцарь и кто лжец?
27
Когда я впервые встретил предыдущую задачу, мне сразу же бросилось в глаза, что C по существу бездействует, исполняя роль, своего рода «бесплатного приложения». Действительно, когда B высказался, то ложность его утверждения можно было бы установить и без вмешательства C (см. решение предыдущей задачи). Следующий вариант задачи позволяет избавиться от «излишеств» в условиях.
Предположим, что незнакомец задал A другой вопрос: «Сколько рыцарей среди вас?» И на этот вопрос A ответил неразборчиво. Поэтому незнакомцу пришлось спросить у B: «Что сказал A?» B ответил: «А сказал, что среди нас один рыцарь». И тогда C закричал: «Не верьте B! Он лжет!»
Кто из двух персонажей B и C рыцарь и кто лжец?
28
В этой задаче два персонажа: A и B. Каждый из них либо рыцарь, либо лжец. A высказывает следующее утверждение: «По крайней мере один из нас лжец».
Кто из двух персонажей A и B рыцарь и кто лжец?
29
Предположим, что A говорит: «Или я лжец, или B рыцарь».
Кто из двух персонажей A и B рыцарь и кто лжец?
30
Предположим, что A говорит: «Или я лжец, или два плюс два — пять». К какому заключению можно прийти на основании этого утверждения?
31
Перед нами снова три островитянина A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец. Двое из них (А и B) высказывают следующие утверждения:
A: Мы все лжецы.
B: Один из нас рыцарь.
Кто из трех островитян A, B и C рыцарь и кто лжец?
32
Предположим, что A и B высказывают следующие утверждения:
A: Мы все лжецы.
B: Ровно один из нас лжец.
Можно ли определить, кто такой B: рыцарь или лжец?
Можно ли определить, кто такой C?
33
Предположим, что A высказывает утверждение: «Я лжец, а B не лжец».
Кто из островитян A и B рыцарь и кто лжец?
34
Перед нами в очередной раз три островитянина A, B и C, о каждом из которых известно, что он либо рыцарь, либо лжец. Условимся называть двух островитян однотипными, если они оба рыцари или оба лжецы. Пусть A и B высказывают следующие утверждения:
A: B — лжец.
B: A и C однотипны.
Кто такой C: рыцарь или лжец?
35
Перед нами снова трое островитян A, B и C. А высказывает утверждение: «В и C однотипны». Кто-то спрашивает у C: «А и B однотипны?»
Что ответит островитянин C?
36. Небольшое происшествие
Эта головоломка необычна. Кроме того, в основу ее положено подлинное происшествие. Однажды, когда я гостил на острове рыцарей и лжецов, мне встретились два местных жителя. Я спросил у одного из них: «Кто-нибудь из вас рыцарь?» Мой вопрос не остался без ответа, и я узнал то, что хотел узнать.
Кем был островитянин, к которому я обратился с вопросом: рыцарем или лжецом? Кем был другой островитянин? Смею заверить вас, что я предоставил в ваше распоряжение информацию, достаточную для решения задачи.
37
Интервал:
Закладка: