Юрий Чирков - Занимательно об энергетике
- Название:Занимательно об энергетике
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Чирков - Занимательно об энергетике краткое содержание
Занимательно об энергетике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вспомним опыт Грова. Он сжигал водород (топливо вовсе не обязано быть только углеродом, как и окислитель — кислородом) в кислороде: Этот процесс известен нам еще со школьной скамьи. Смесь двух объемов водорода и одного объема кислорода называется гремучим газом. При поджигании огнем или искрой эта смесь взрывается.
Пока это обычное горение водорода. Продуктом является вода. Химик запишет эту реакцию так:
2Н2 + О2 = 2Н2О + тепло.(1)
Две молекулы водорода, соединившись с молекулой кислорода, образовали две молекулы воды. Перед нами пример химической реакции, которая сопровождается выделением тепла. (Химическая энергия превращается в тепловую, и ее можно при желании преобразовать в ток, правда, с существенными потерями.)
Но можно ли повернуть дело так, чтобы в ходе реакции генерировалось электричество — электроны (их будем обозначать символом е-)? Можно ли, скажем, обеспечить протекание такого процесса:
2Н2 +4ОН-->4Н2О+4е-. (2)
Да, отвечает наука. Для этого надо свести вместе три фазы: газ водород, источник ионов ОН- — электролит (раствор щелочи в воде) и кусок металла, который и примет образующиеся в реакции (2) электроны. (Процесс (2) и ему подобные, идущие в месте стыка трех фаз, на так называемой «трехфазной границе», изучает особая наука — электрохимия.)
Так получать электроны громоздко, неуклюже? Возможно. Однако, чтобы получить желаемое — электрический ток, схему приходится усложнить еще больше. Ведь чтобы реакция (2) шла долго, к границе раздела металл (в электрохимии его называют «электродом») — электролит — газ необходимо непрерывно подводить ионы и отводить электроны. Значит, требуется и второй электрод. Нужна замкнутая цепь.
Будем ко второму электроду (специально подобранному) подавать кислород или воздух, чтобы там шла реакция
4е- + О2 + 2Н2О->4ОН-.(3)
Очевидно, что в сумме реакции (2) и (3) — это можно легко проверить! — дают реакцию (1). И вроде бы мы вернулись к простому горению. Однако в устройстве, которое осуществил впервые Гров — в водородно-кислородном топливном элементе (именно в нем идут процессы (2) и (3), — энергия химической реакции преобразуется уже не в тепло, которое трудно использовать, а непосредственно в энергию бегущих по проволоке электронов.
Включенная во внешнюю цепь «газового элемента Грова» лампа горит! Горение в ней поддерживают электроны, выделяющиеся на одном электроде («водородном», реакция (2): сюда подается водород) и поглощаемые на другом («кислородном», реакция (3).
Но электрохимическое горение замечательно не только тем, что может идти даже при комнатных температурах («холодное» горение). Главное его достоинство, столь важное для технических приложений, в другом: это горение очень эффективно, идет практически без потерь.
Экономная энергетика живого
Замечательный советский электрохимик академик А. Фрумкин, создавший Институт электрохимии Академии наук СССР в Москве, где проблема топливного элемента одна из ведущих, как-то беседовал с журналистами. Обсуждая недостатки традиционной тепловой энергетики, он нарисовал яркий образ:
— Представьте себе мучимого жаждой человека. Он добрался наконец до воды, зачерпнул полный стакан, но... к губам ему удается донести лишь треть!.. А ведь именно в таком положении находится человечество: из наполненного до краев кубка энергии ему удается полезно использовать лишь малую часть. Две трети добытой из-под земли тяжким трудом людей химической энергии топлива пропадает зря...
Не то «холодное» горение, оно выгодно отличается от обычного: лишено ограничений, установленных Карно, здесь КПД может даже превысить 100 процентов!
Секрет прост: энергия черпается из окружающей среды и добавляется к химической энергии сжигаемого топлива. Но это экзотика. Правило же таково, что при «холодном» горении удается почти всю химическую энергию непосредственно превратить в очень удобную для использования энергию электричества. И доказал то впервые немецкий ученый Нернст.
В 1893 году Нернст вывел теоретическую формулу (она носит его имя), определяющую величину электродвижущей силы электрохимического элемента. Внешне она кажется простой, так же, как и формула Карно. Однако простота эта обманчива.
Мы не будем ни приводить, ни обсуждать формулу Нернста. Нам важно другое: те выводы, которые ученый из нее сделал. В том же 1893 году Нернст рассчитал величину электродвижущей силы гальванического элемента и то количество электрической энергии, которое получается при электрохимическом соединении угля с кислородом. Результат был ошеломляющим. Нернст показал, что если бы удалось превратить химическую энергию угля в электричество электрохимическим путем (читай, в топливных элементах!), то максимальный теоретический КПД такого процесса составил бы 99,75 процента!
Почти сто процентов! Вот оно, первое из многих достоинств топливных элементов. В них в отличие от паровой и прочих тепловых машин энергия практически не теряется.
Любопытно, что очень схоже решила энергетическую проблему и живая природа. Здесь также, минуя малоэффективную тепловую стадию с очень высоким КПД и в поразительно мягких условиях (комнатные температуры, нормальные давления, водная среда), химическая энергия может быть преобразована в механическую энергию (мышцы, сердце, жгутики бактерий), осмотическую работу (секреция желез, всасывание в кишечнике), электричество (нервные клетки, электрические органы некоторых рыб), свет (светляки) и так далее.
Но самое удивительное то, что все эти превращения содержат в качестве обязательного звена «холодное» горение водорода с кислородом. Биохимики установили' биологический водородно-кислородный топливный элемент как бы «вмонтирован», «впечатан» в каждую живую клетку. Не вдаваясь в биохимические тонкости, укажем лишь, откуда в организме человека берется водородное топливо (окислитель же — кислород из воздуха, — попадая через трахеи и легкие, всасывается в кровь, соединяется с гемоглобином и так разносится по всем тканям).
Источником водорода служит пища — жиры, углеводы, белки. В желудке, кишечнике, клетках она в конечном итоге дробится до элементарных кирпичиков — так называемых жирных кислот, которые, в свою очередь, распадаются в клетке до воды, углекислого газа и атомарного водорода.
Этот-то водород, соединяясь с кислородом в процессе «холодного» горения, и составляет основу биоэнергетики организма. А образующийся в этой реакции электрон запускает все идущие в живом организме процессы.
Предвидение Оствальда
Большую роль в судьбе топливных элементов сыграл немецкий ученый Вильгельм Оствальд.
Сейчас Оствальдом интересуются в основном лишь историки науки, а ведь когда-то он был притчей во языцех, главой громадной, созданной им самим школы физикохимиков.
Читать дальшеИнтервал:
Закладка: