Cет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё

Тут можно читать онлайн Cет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент 5 редакция, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Cет Cтивенс-Давидовиц - Все лгут. Поисковики, Big Data и Интернет знают о вас всё краткое содержание

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - описание и краткое содержание, автор Cет Cтивенс-Давидовиц, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор книги, специалист Google по Data Science, провел исследование, опираясь на науку о больших данных (Big Data), а также данные, которые может предоставить исследователю Интернет. В результате он получил сенсационные данные, полностью переворачивающие современные представления об обществе, в котором мы живем.

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - читать онлайн бесплатно ознакомительный отрывок

Все лгут. Поисковики, Big Data и Интернет знают о вас всё - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Cет Cтивенс-Давидовиц
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Джеймс Хейвуд {134} – предприниматель, использующий другой подход к решению проблемы объединения медицинских данных. Он создал сайт PatientsLikeMe.com, где люди могут сообщать данные о своих заболеваниях, методах лечения и возникающих побочных эффектах. И Джеймс уже добился большого успеха в отношении ряда болезней.

Его цель заключается в сборе достаточного количества информации о людях со сходными состояниями – чтобы впоследствии каждый мог найти своего двойника по здоровью. Хейвуд надеется, что таким образом можно будет найти людей нужных возраста и пола, с похожими историей и симптомами – и посмотреть, что им помогло. Это будет совсем другой тип медицины.

Истории, рассказанные данными

Во многих случаях детализация данных для меня ценнее локального поиска для конкретного исследования, поскольку она предлагает новый способ видения и описания жизненных процессов.

Когда люди узнают, что я – и ученый, занимающийся сбором и анализом данных, и писатель, они иногда делятся каким-либо фактом или результатами опроса. Я часто нахожу эти сведения скучными, обобщенными и лишенными жизни. Они не сообщают мне никаких интересных историй.

Помимо этого, друзья пытались уговорить меня начать читать различные романы и биографии. Но меня это тоже мало интересует. Я всегда спрашиваю себя: «Происходило ли подобное в других ситуациях? Каков более общий принцип?» Их истории кажутся мелкими и непоказательными.

Я попытался изложить в этой книге нечто, на мой взгляд, не имеющее аналогов. Оно основано на данных и цифрах; оно показательно и позволяет заглянуть далеко вперед. И при этом большие данные – настолько обширный материал, что позволяют представить себе описываемых ими конкретных людей. Когда мы составляем поминутный график расхода воды в Эдмонтоне, я вижу, как люди встают с дивана в конце хоккейного периода. Когда мы внимательно изучаем людей, переезжающих из Филадельфии в Майами и начинающих мухлевать с налогами, я вижу, как они разговаривают со своими соседями и узнают о налоговых трюках. Когда мы детально анализируем статистику о бейсбольных болельщиках разного возраста, я вижу свое детство, детство брата, а также миллионы взрослых мужчин, все еще неистово болеющих за команды, завоевавшие их сердца, когда им было по восемь лет.

Рискуя в очередной раз впасть в пафос, я должен сказать: упомянутые в этой книге экономисты и ученые, занимающиеся сбором и анализом информации, создали не просто новый инструмент, но новый жанр. В этой главе и в большей части этой книги я попытался описать данные – настолько подробные и многочисленные, что позволяют нам добиться предельно точной детализации. Не ограничиваясь информацией о каком-либо конкретном обычном человеке, мы с их помощью все еще можем рассказывать разнообразные и запоминающиеся истории.

Глава 6

Весь мир – лаборатория

27 февраля 2000 года {135}в кампусе Google в Маунтин-Вью, начинался как обычный день. Светило солнце, велосипедисты крутили педали, массажистки занимались массажем, сотрудники увлажняли себе кожу огуречной водой. И вдруг в этот самый обычный день нескольким инженерам Google пришла в голову идея, оказавшая невероятное влияние на развитие интернета. Разработчики нашли наилучший способ заставить вас переходить на сайты, оставаться на них и возвращаться туда снова.

Прежде чем описывать то, что они сделали, мы должны поговорить о разнице между корреляцией и причинностью – это огромная проблема в области анализа данных, которой мы еще не уделили должного внимания.

СМИ каждый день бомбардируют нас результатами исследований на базе корреляций. Например, мы уже рассказывали, что физическое состояние у умеренно потребляющих алкоголь, как правило, лучше, чем у не умеющих остановиться. То есть наблюдается корреляция.

Значит ли это, что если пить немного, то здоровье улучшится – является ли это причинно-следственной связью? Пожалуй, нет. Скорее, потреблять алкоголь в небольших дозах людям позволяет как раз хорошее здоровье. Социологи называют это обратной причинно-следственной связью. Или, возможно, существует независимый фактор, приводящий как к нежеланию много пить, так и к хорошему здоровью. Например, если вы проводите много времени с друзьями, это приводит к потреблению алкоголя и крепкому здоровью. Социологи называют это смещением с опущенной переменной.

Но как нам точнее установить причинно-следственную связь? Золотой стандарт – это рандомизированное контролируемое испытание. Вот как это работает. Людей наугад делят на две случайные группы. Одну, рабочую, просят сделать или взять что-то. Другую, контрольную, не просят. После чего наблюдают за реакцией каждой группы. Разница в результатах и является причинно-следственной связью.

Например, чтобы проверить, приводит ли умеренное употребление алкоголя к хорошему здоровью, можно случайным образом выбрать несколько человек. Некоторые из них будут пить один бокал вина в день в течение года, а другие не будут. А затем сравнить их состояние здоровья. Поскольку люди были разбиты на две группы случайным образом, нет никаких оснований ожидать, что в одной из них участники будут более здоровы или более социализированы. Вы можете поверить, что эффект вина совершенно обычен. Рандомизированные контролируемые испытания являются самым надежным доказательством в любой сфере деятельности. Если таблетка успешно прошла такой тест, ее можно начинать продавать. Если она не может пройти его, ее не будет на аптечных полках.

Подобные эксперименты начинают все чаще использоваться в социальных науках. Эстер Дюфло, французский экономист из Массачусетского технологического института, возглавила кампанию за более широкое распространение таких исследований в экономике развития – области знаний, пытающейся найти наилучшие способы помочь беднейшим людям в мире. Рассмотрим эксперимент Дюфло и ее коллег, посвященный улучшению образования в сельских районах Индии, где более половины учащихся средних школ не могут прочитать простое предложение. Одной из потенциальных причин проблем является нехватка учителей. На данный момент в некоторых школах в сельских районах Индии не хватает более 40 % преподавателей.

В чем суть теста Дюфло? Они с коллегами случайным образом разделили школы на две группы. В одной (рабочая группа) в дополнение к базовой заработной плате учителям каждый день платили небольшую сумму – 50 рупий, или около 1,15 долларов. В других преподаватели работали без дополнительной оплаты. Результаты были показательны. Когда учителям доплачивали, они в полтора раза реже пропускали работу {136}. Успеваемость школьников тоже существенно улучшилась – особенно это касалось молодых девушек. К концу эксперимента в школах, где учителям платили за приход на занятия, стало на 7 % больше девочек, умеющих читать и писать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Cет Cтивенс-Давидовиц читать все книги автора по порядку

Cет Cтивенс-Давидовиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Все лгут. Поисковики, Big Data и Интернет знают о вас всё отзывы


Отзывы читателей о книге Все лгут. Поисковики, Big Data и Интернет знают о вас всё, автор: Cет Cтивенс-Давидовиц. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x