Гарри Каспаров - Человек и компьютер: Взгляд в будущее

Тут можно читать онлайн Гарри Каспаров - Человек и компьютер: Взгляд в будущее - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Гарри Каспаров - Человек и компьютер: Взгляд в будущее краткое содержание

Человек и компьютер: Взгляд в будущее - описание и краткое содержание, автор Гарри Каспаров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин?
Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта. Каспаров рассказывает, почему не надо опасаться новых технологий и как интеллектуальные машины помогут людям превращать мечты в реальность.

Человек и компьютер: Взгляд в будущее - читать онлайн бесплатно ознакомительный отрывок

Человек и компьютер: Взгляд в будущее - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Гарри Каспаров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следующий шаг в развитии компьютерных шахмат был сделан в 1956 году в Центре ядерных исследований в Лос-Аламосе. Здесь теории Винера, Тьюринга и Шеннона впервые воплотились в реальной шахматной машине. Когда в центр доставили один из первых в мире компьютеров — гигантского монстра MANIAC-1 с 2400 вакуумными трубками и революционной возможностью хранения программ в памяти, ученые-разработчики водородной бомбы немедленно опробовали машину, написав для нее шахматную программу. А как же еще? Из-за ограниченных ресурсов устройства им пришлось использовать уменьшенную доску шесть на шесть клеток и исключить слонов. После партии с самим собой и проигрыша сильному шахматисту (игравшему без ферзя) компьютер победил девушку, едва знакомую с правилами игры. Так человек впервые уступил машине в интеллектуальной игре.

Спустя год после этого исторического события, в 1957-м, группа исследователей из Университета Карнеги — Меллона провозгласила, что раскрыла секрет создания алгоритма типа Б, который всего через десять лет победит чемпиона мира по шахматам. Учитывая, насколько медленными и дорогими в те времена были компьютеры, это утверждение звучало не менее дерзко, чем заявление Джона Кеннеди, пообещавшего 25 мая 1961 года, что Соединенные Штаты к концу десятилетия отправят человека на Луну.

Возможно, исследователи из Университета Карнеги—Меллона просто не осознавали масштаба проблемы. Даже если бы вся индустриальная мощь Америки была брошена на создание компьютера, способного к 1967 году переиграть самых сильных шахматистов планеты, эта задача вряд ли была бы выполнена. Программа Apollo потребовала разработки новых материалов и инновационных технологий, и предсказание Кеннеди осуществилось только благодаря прорывам почти во всех соответствующих технологических областях. Тем не менее цель, поставленная авторами космической программы, отвечала общему уровню технического развития того времени. Ответственные за Apollo в 1961 году представляли, что им нужно сделать, чтобы отправить человека на Луну, даже если точно не знали как.

Напротив, компьютеры, способные составить конкуренцию чемпиону мира по шахматам, появились только в 1997 году, через 30 лет после обещанного командой из Университета Карнеги — Меллона срока, — и это при том, что вычислительная мощность компьютеров удваивалась примерно каждые два года согласно закону Мура. Их сенсационный «сверхумный» алгоритм быстро показал свою неработоспособность, и было неясно, каким путем следовать дальше. Шахматы оказались слишком сложной игрой, компьютеры — чересчур медленными. Если бы в 1960-е годы на разработку шахматных программ потратили на несколько миллионов человеко-часов больше, это привело бы к впечатляющим успехам в области программирования и разработки аппаратного обеспечения, но компьютерное оборудование, способное хранить достаточные объемы информации и выполнять сложные программы с достаточно высокой скоростью, чтобы играть на уровне гроссмейстеров, стало доступным только в 1980-х.

Создание такой шахматной программы к 1967 году было делом немыслимым и вряд ли удалось бы к 1977-му, даже если бы на него израсходовали сумму, эквивалентную бюджету NASA. Суперкомпьютер Cray-1, установленный в Лос-Аламосской национальной лаборатории в 1976-м, был самым мощным компьютером в мире со скоростью 160 млн операций в секунду (160 мегафлопсов). Сравним это с программой Deep Junior, с которой я сыграл вничью в 2003 году. Она работала на компьютере с четырьмя процессорами Pentium 4, каждый из которых функционировал примерно в 20 раз быстрее, чем суперкомпьютер Cray-1, и играла не хуже и даже лучше {16} 16 …играла не хуже и даже лучше… Чтобы лучше понять, как закон Мура работает на практике и с какой скоростью появляются все более быстрые и меньшие по размеру компьютеры, сравните следующие цифры: в 1985 году самый производительный компьютер в мире Cray-2 весил несколько тысяч килограммов при максимальной скорости 1,9 гигафлопса; в 2016 году iPhone 7 весил меньше 150 г при максимальной скорости 172 гигафлопса. , чем требовавшая использования специализированного оборудования Deep Blue в 1997-м.

Дело было не в скорости: просто Deep Blue перебирала в среднем в 50 раз больше позиций в секунду, чем Deep Junior, — 150 млн против 3 млн. Но техническая скорость — только один из факторов шахматной силы машины. Чтобы получить максимальную отдачу от аппаратного обеспечения, в первую очередь необходимо иметь эффективную программу. Как показали усилия нескольких поколений шахматных программистов, начиная с 1970-х годов, уровень шахматных способностей программы тем выше, чем чаще происходит ее оптимизация и чем «умнее» процедуры поиска.

Когда же программисты добавляют в алгоритм поиска различные элементы, связанные с шахматной спецификой, приходится искать компромиссное решение. Самые простые шахматные программы должны понимать, например, что такое мат и какова относительная ценность фигур. Если вы научите машину, что и ладья и слон стоят трех пешек — тогда как ладья в действительности сильнее слона, — она не станет сильным игроком. Компьютеры очень хорошо и быстро справляются с подсчетом материала и узнают, у кого больше фигур на доске, а программистам не нужно глубоко разбираться в шахматах, чтобы правильно присвоить фигурам стандартные значения.

Далее следуют более абстрактные шахматные знания: надо понимать, кто контролирует больше пространства на доске, как расположены пешки, находится ли король в безопасности и т. п. Каждый раз, когда вы даете компьютеру новую информацию для оценки хода, поиск замедляется. Короче говоря, шахматная программа может быть либо быстрее и глупее, либо медленнее и умнее. Найти баланс непросто, и потребовались десятилетия, чтобы создать машины, которые были бы достаточно умными и достаточно быстрыми для того, чтобы бросить вызов сильнейшим шахматистам мира.

Хотя первоначальные прогнозы не оправдались, на протяжении следующих 20 лет в компьютерных шахматах наблюдался устойчивый прогресс. Неумолимое развитие вычислительных мощностей по закону Мура и достигнутые методом проб и ошибок успехи в программировании привели к созданию в 1977 году шахматных машин, способных играть на экспертном уровне — то есть так, как играют лучшие 5 % шахматистов. Компьютеры по-прежнему делали множество вопиюще нелогичных ходов, которые никогда бы не сделал даже слабый игрок. Но они стали достаточно быстрыми для того, чтобы компенсировать эти случайные промахи грамотной обороной и выверенной тактикой.

Увеличение скорости работы аппаратного обеспечения было только одним из факторов прогресса. Значительную роль сыграли более совершенные программы, ускоряющие процесс поиска. Был разработан алгоритм «альфа-бета», который позволял программам быстрее отсекать слабые ходы и глубже просчитывать остальные. Он представлял собой улучшенную версию алгоритма «минимакс», описанного Шенноном как стратегия типа A, или метод грубой силы. Программы, которые использовали «альфа-бета», отвергали любой ход, получавший более низкую оценку, чем уже рассмотренный. Благодаря этому ключевому усовершенствованию и другим изменениям программы типа A стали доминировать над программами типа Б. Эффективное использование грубой силы перевешивало любую попытку сымитировать человеческое мышление и интуицию в шахматной машине. Некоторые шахматные знания были необходимы, но важнейшим условием победы являлась скорость.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Гарри Каспаров читать все книги автора по порядку

Гарри Каспаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Человек и компьютер: Взгляд в будущее отзывы


Отзывы читателей о книге Человек и компьютер: Взгляд в будущее, автор: Гарри Каспаров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x