Гарри Каспаров - Человек и компьютер: Взгляд в будущее

Тут можно читать онлайн Гарри Каспаров - Человек и компьютер: Взгляд в будущее - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина Паблишер, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Гарри Каспаров - Человек и компьютер: Взгляд в будущее краткое содержание

Человек и компьютер: Взгляд в будущее - описание и краткое содержание, автор Гарри Каспаров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Сегодня искусственный интеллект меняет каждый аспект нашей жизни — ничего подобного мы не видели со времен открытия электричества. Но любая новая мощная технология несет с собой потенциальные опасности, и такие выдающиеся личности, как Стивен Хокинг и Илон Маск, не скрывают, что видят в ИИ возможную угрозу существованию человечества. Так стоит ли нам бояться умных машин?
Матчи Гарри Каспарова с суперкомпьютером IBM Deep Blue стали самыми известными в истории поединков человека с машинами. И теперь он использует свой многолетний опыт противостояния с компьютерами, чтобы взглянуть на будущее искусственного интеллекта. Каспаров рассказывает, почему не надо опасаться новых технологий и как интеллектуальные машины помогут людям превращать мечты в реальность.

Человек и компьютер: Взгляд в будущее - читать онлайн бесплатно ознакомительный отрывок

Человек и компьютер: Взгляд в будущее - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Гарри Каспаров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

DARPA не полностью отказалось от ИИ и даже имело в бюджете небольшую «шахматную» статью. Внимательно прочитав научные публикации о машине HiTech, созданной Хансом Берлинером в Университете Карнеги — Меллона, можно увидеть, что в 1980-е этот проект частично финансировался за счет гранта DARPA. Недавно агентство предложило провести ряд конкурсов на лучший беспилотный автомобиль и другие прикладные технологии, связанные с практическим применением ИИ {41} 41 Недавно агентство предложило провести ряд конкурсов… В том числе соревнования по защите информации «Захвати флаг» с участием компьютеров; см.: http://archive.darpa.mil/cybergrandchallenge_competitorsite/Files/Competitor_Day_CGC_Presentation_distar_21978.pdf. . Используя развитие шахматных машин как модель, DARPA объявило конкурс на лучшую разработку автономной защиты сети. В соответствии с дарвиновской теорией эволюции в компьютерных шахматах фокус на конкуренции, а не на фундаментальных исследованиях препятствовал прогрессу истинного искусственного интеллекта, но способствовал созданию все более эффективных шахматных машин. А военные всегда испытывали острый интерес к алгоритмам анализа разведданных и совершенствованию военных технологий, к чему я вернусь позже.

Грандиозные предсказания исследователей искусственного интеллекта в 1950–1960-е годы перекликались с прогнозами специалистов по компьютерным шахматам тех же лет; на самом деле зачастую это были одни и те же голоса. Но, в отличие от ученых, занимавшихся ИИ, специалисты по компьютерным шахматам вытащили золотой билет — разработали поисковый алгоритм «альфа-бета», который гарантировал стабильное улучшение. Было ли это новшество благословением или проклятием, но оно обусловило ощутимый прогресс. Те же, кто изучал универсальный ИИ, не сумели добиться столь же явного постепенного роста, который гарантировал бы им государственные гранты, инвестиции корпораций и исследовательские программы в университетах. Весна ИИ наступила только тогда, когда это движение, как и движение компьютерных шахмат, отказалось от грандиозной мечты сымитировать человеческий интеллект. Новым направлением развития стало машинное обучение, которое на протяжении многих лет не достигало больших успехов. Но в 1980-е годы появился новый решающий фактор — большие данные.

Дональд Мичи был одним из пионеров машинного обучения, еще в 1960 году применив этот метод к игре в крестики-нолики. Основная концепция заключается в том, что вы не закладываете в машину комплекс правил, которые она должна соблюдать, подобно тому как вы учите грамматические и синтаксические правила при изучении иностранного языка. Вместо того чтобы рассказывать машине о процессе, вы снабжаете ее множеством примеров этого процесса и позволяете самой выяснить правила.

И снова перевод с языка на язык служит хорошей иллюстрацией. Программа Google Translate опирается на машинное обучение и практически не знает правил тех десятков языков, с которыми работает. Компания даже не нанимает людей со знанием соответствующих языков. В систему загружаются миллионы и миллионы примеров правильного перевода, и машина, встречая что-то новое, сама определяет, какой вариант будет верным. В 1960-е годы, когда Мичи и другие пробовали применять этот подход, машины были слишком медленными, а их системы сбора и ввода данных — примитивными. Никто не смел предположить, что решение такой «человеческой» задачи, как язык, может быть делом масштаба и скорости. Создатели систем ИИ столкнулись с той же проблемой, что и первые шахматные программисты, которые, глядя на программы типа А, решили, что машины никогда не станут достаточно быстрыми для того, чтобы выйти на уровень грамотной игры с помощью грубой силы. Как сказал один из разработчиков программы Google Translate: «Когда вы переходите от десяти тысяч обучающих примеров к десяти миллиардам, это начинает работать. Данные решают всё» {42} 42 «Данные решают всё»… Высказывание Джоша Эстеля цитируется в статье Джеймса Сомерса «Человек, который научит машины думать», опубликованной в журнале Atlantic в ноябре 2013 года. .

В начале 1980-х Мичи со своими коллегами написал основанную на данных экспериментальную шахматную программу машинного обучения и получил весьма занятные результаты. Программисты «скормили» машине сотни тысяч позиций из гроссмейстерских партий в надежде на то, что машина сама разберется, что к чему. Вначале показалось, что это сработало. Ее оценка позиций была более точной, чем у обычных программ. Проблемы начались во время партии. Программа разыграла дебют, начала атаку — и сразу же пожертвовала ферзя! Потеряв ферзя за бесценок, она проиграла партию в несколько ходов. Почему она это сделала? Дело вот в чем: когда ферзя жертвует гроссмейстер, за этим всегда следует блестящий и решительный удар, и машина, учившаяся на гроссмейстерских партиях, решила, что жертва ферзя — ключ к победе! {43} 43 Машина, учившаяся на гроссмейстерских партиях… История, рассказанная Кэтлин Спраклен, которая вместе со своим мужем Дэном написала знаменитую программу Sargon для шахматного микрокомпьютера. См. «Устную историю Кэтлин и Дэна Спраклен» — интервью Гарднера Хендри от 2 марта 2005 года; http://archive.computerhistory.org/projects/chess/related_materials/oral-history/spacklen.oral_history.2005.102630821/spracklen.oral_history_transcript.2005.102630821.pdf.

Этот итог вызвал смех и разочарование, но представьте себе, что может произойти в реальном мире, если машины станут на основании примеров вырабатывать собственные правила. Давайте снова обратимся к научной фантастике, поскольку произведения этого жанра полны точных и дальновидных прогнозов. Опустим роботов-убийц и сверхразумные машины из фильмов «Терминатор» и «Матрица». Эти мрачные сценарии хороши только для фильмов и новостных заголовков, но такое антиутопическое будущее настолько далеко и маловероятно, что разговор о нем лишь отвлекает нас от более насущных и более вероятных проблем. К тому же лично мне надоело сражаться с машинами.

В картине 1984 года «Человек со звезды» рассказывается о наивном инопланетянине, который попадает на Землю (его сыграл Джефф Бриджес). Пришелец пытается вписаться в человеческое общество и учится обычаям землян, наблюдая за их поведением, — такая вот инопланетная версия универсального машинного обучения. Естественно, он делает массу забавных ошибок, но самую серьезную совершает тогда, когда садится за руль автомобиля. Он на скорости проскакивает перекресток, провоцируя аварию, и так объясняет своей подруге Дженни свой поступок:

Инопланетянин: Все в порядке?

Дженни: В порядке? Ты сошел с ума? Ты чуть не убил нас обоих! Ты сказал, что наблюдал за мной. И сказал, что знаешь дорожные правила!

Инопланетянин: Я знаю правила.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Гарри Каспаров читать все книги автора по порядку

Гарри Каспаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Человек и компьютер: Взгляд в будущее отзывы


Отзывы читателей о книге Человек и компьютер: Взгляд в будущее, автор: Гарри Каспаров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x