Генрих Альтшуллер - Найти идею
- Название:Найти идею
- Автор:
- Жанр:
- Издательство:Альпина Бизнес Букс
- Год:2007
- Город:Москва
- ISBN:978-5-9614-0534-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Генрих Альтшуллер - Найти идею краткое содержание
«Найти идею» — книга, в которой ТРИЗ изложена в наиболее полном и завершенном виде. В данном издании впервые приведены все основные инструменты ТРИЗ: стандарты на решение изобретательских задач, полный текст АРИЗ-85В, приемы разрешения технических противоречий. Даются многочисленные примеры создания изобретений при помощи ТРИЗ и задачи для самостоятельного решения.
Книга будет интересна всем, кто стремится повысить эффективность творчества, и будет полезна не только изобретателям и инженерам, но и бизнесменам, менеджерам, людям творческих профессий, студентам и школьникам.
Найти идею - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Для простого веполя К = 1/ 3: построение веполя требует трех элементов. У комплексного веполя К ниже — 1/ 4. У двойного выше — 2/ 4, т. е. 1/ 2. Чем больше К, тем выше степень идеальности системы. Повысить К можно, в частности, использованием естественных элементов или даровых искусственных элементов, уже имеющихся в системе.
Известна, например, система, приподнимающая крышу парника для проветривания. Эта система включает «измерительный веполь» (угол подъема зависит от температуры) и «изменительный» веполь (механический привод для изменения угла наклона крыши). На два веполя приходится пять элементов (поле в «измерительном» веполе даровое, естественное). Коэффициент свернутости равен 2/ 5. По а. с. 383430 предложено использовать крышу с прогибающимися биметаллическими пластинами. Такие пластины не только выполняют функции «измерительного» веполя, но и сами себя изменяют — поднимают крышу при повышении температуры. На два веполя здесь приходится только два вещества, т. е. К = 2/ 2= 1. В аналогичной крыше, выполненной из металла с эффектом памяти формы, оба веполя заменены одним веществом, К = 2.
Существует множество приемов свертывания. Мы к этому вопросу еще вернемся. А пока — забавная задача на один из приемов полного свертывания.
Задача 6.5.Рыболовы установили, что рыба охотнее берет наживку, если видит, что к наживке устремилась конкурентка — другая рыба. Тут уже не до сомнений — брать или не брать. Обязательно брать! И рыба мчится к наживке…
Бисистема работает активнее моносистемы — обычный случай. Но как создать такую бисистему? Пробовали укреплять рядом с наживкой муляж. Он, естественно, не двигался, и рыба не обращала на него внимания. И вот, наконец, в одном из патентов США появилось решение этой животрепещущей проблемы. Ответ: полное свертывание бисистемы. Но как именно? Как сделать, чтобы вторая рыба была и чтобы второй рыбы не было? Любой муляж плох, а использовать настоящую рыбу сложно…
Свертывание — только один из путей повышения эффективности систем. Системы можно форсировать и другими преобразованиями. О некоторых из них, например об увеличении динамичности, мы уже говорили. Отметим здесь два изящных приема: согласование ритмики частей системы и структурирование.
Задача 6.6.В кинофильме «Алгоритм изобретения» (Центр-научфильм, 1974) приведен пример запаздывания изобретения. Сначала был разработан способ гидравлического ослабления угольного пласта импульсами давления. Только через семь лет появилось следующее изобретение, резко — и без затрат! — повысившее эффективность исходного способа: импульсы стали подавать с частотой, равной частоте собственных колебаний расшатываемого массива (а. с. 317797).
Вот изобретение по а. с. 1138511: «Способ закрепления несвязных пород, включающий нагнетание в породы тампонажного раствора, отличающийся тем, что, с целью снижения затрат путем увеличения радиуса закрепления пород, во время нагнетания тампонажного раствора ему и окружающим породам сообщают колебания». Спрогнозируйте следующее техническое решение, закономерно развивающее это изобретение.
Аналогия с задачей, представленной в а. с. 317797, очевидна. В обоих случаях требуется, чтобы жидкость как можно энергичнее проникала в горную породу. Следовательно, надо согласовать частоту импульсов, сообщаемых жидкости, с собственной частотой колебаний обрабатываемого массива. Обидно, если идея согласования частот (или рассогласования) появится лет через семь или десять…
Сколько изобретений могло появиться на десятки лет раньше! А. с. 614794 — устройство для массажа, синхронного с ударами сердца; а. с. 307896 — механизм для резки древесины инструментом, «частота пульсации которого близка к собственной частоте колебаний перерезаемой древесины»; а. с. 787017 — при выведении камней из мочеточников «…частоту тянущих усилий выбирают кратной частоте перистальтики мочеточника»; а. с. 506350 — способ извлечения пыльцы из растений: действуют звуком, «совпадающим с частотой собственных колебаний стержневых систем растений»; а. с. 714509 — в многожильном проводе линий электропередач один провод имеет больший диаметр, чтобы при ветре колебаться «невпопад» и тем самым гасить общие колебания…
Согласование ритмики обычно не требует введения новых полей и веществ. В этом сила приема. Аналогично обстоит дело и с другим приемом — структурированием. Смысл приема — в придании веществам и полям определенной структуры для получения дополнительного эффекта. Типичный пример — изобретение по а. с. 536374: «Способ профилирования материала типа пруткового путем наложения на заготовку ультразвуковых колебаний и ее пластической деформации, отличающийся тем, что, с целью получения на заготовке периодического профиля синусоидального характера, заготовку подвергают действию ультразвуковых колебаний так, чтобы расположение пучностей и узлов ультразвуковой волны соответствовало выступам и впадинам профиля, после чего осуществляют процесс пластического деформирования заготовки в осевом направлении».
Задача 6.7.Предположим, на одной из планет системы Тау Кита обнаружена жизнь. Правда, всего лишь в виде планктона. Автоматы доставили на Землю образцы воды с крохотными (50–100 мкм) комочками живой материи. Сразу же возникла задача: как наблюдать «инопланетян» в микроскоп, если они находятся в постоянном броуновском движении? Посмотришь в микроскоп и ничего не разглядишь: тау-китяне, как сказано у поэта, «то явятся, то растворятся»…
Чтобы вести наблюдение с помощью микроскопа, объект нужно остановить и некоторое время (1–2 мин) подержать на месте. Требуется способ фиксирования микрообъектов в жидкости (в условиях, максимально близких к естественным).
Информация к размышлению. Частицы планктона практически не способны к самостоятельному передвижению. Они перемешаются вместе с водой либо за счет броуновского движения.
Мы познакомились со многими линиями развития технических систем. Они оказались непростыми — с неожиданными переходами, спиральными витками, линиями внутри линий (увеличение различия между элементами би- и полисистем). Более того, выяснилось, что линии развития иногда удается увязать друг с другом. Мы видели это на рис. 11. Закономерно возникает мысль связать вместе все линии и построить нечто вроде общей схемы развития,представленной на рис. 12 в несколько упрощенном виде.

Осью схемы, ее центральным стержнемслужит линия развития вепольных систем: от невеполей к простым веполям, затем к сложным веполям и далее к веполям форсированным и комплексно форсированным. На каждом этапе этой линии есть путь вверх— переход к надсистеме. На схеме он показан только для этапа «простые веполи». Сделано это, чтобы не загромождать схему. С этой же целью все изображено в одной плоскости, хотя, как мы видели, витки «моно — би — поли — моно…» образуют спираль. Упрощенно показан и путь вниз, т. е. переход на микроуровень. Линии вниз могут идти от каждого этапа и включают много звеньев: переход на молекулярный уровень, переход на атомарный уровень и т. д.
Читать дальшеИнтервал:
Закладка: