Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной
- Название:Достучаться до небес: Научный взгляд на устройство Вселенной
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2014
- Город:Москва
- ISBN:978-5-91671-264-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лиза Рэндалл - Достучаться до небес: Научный взгляд на устройство Вселенной краткое содержание
Достучаться до небес: Научный взгляд на устройство Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

РИС. 43. Адроны, «сделанные» из красивых кварков, живут достаточно долго, чтобы оставить видимый трек в детекторе, прежде чем рассыпаться на другие заряженные частицы. При этом в кремниевом детекторе может образоваться перегиб трека, по которому, собственно, и распознают красивые кварки. На рисунке показан распад истинных кварков
Еще один тип кварка, выделяющийся среди прочих в экспериментальном плане, — истинный кварк (t–кварк); своей особостью он обязан большой массе. Истинный кварк—самый тяжелый из тех трех кварков, заряд которых равен заряду верхнего кварка (третий кварк этой группы называется очарованным ). Истинный кварк примерно в 40 раз тяжелее красивого — самого тяжелого кварка с зарядом другого знака — и более чем в 30000 раз тяжелее верхнего кварка, обладающего таким же зарядом.
Истинные кварки достаточно тяжелы, чтобы продукты их распада оставляли различимые треки. При распаде более легких кварков продукты распада, как и первоначальная частица, движутся со скоростями, очень близкими к скорости света, и потому сливаются как будто в единую струю, даже если начало ей положили две или более отдельные частицы. С другой стороны, истинные кварки, если только они не чрезмерно энергичны, наблюдаемо распадаются на красивые кварки и W–бозоны (заряженные слабые калибровочные бозоны); наличие того и другого наглядно свидетельствует о присутствии истинного кварка. Считается, что благодаря своей массе истинный кварк наиболее тесно взаимодействует с частицей Хиггса и другими частицами, вовлеченными в физику слабых взаимодействий, в которой мы надеемся в скором времени разобраться. Свойства истинных кварков и их взаимодействий могут оказаться полезны для понимания фундаментальных физических теорий, на которых основана Стандартная модель.
В ПОИСКАХ ПЕРЕНОСЧИКОВ СЛАБОГО ВЗАИМОДЕЙСТВИЯ
Прежде чем закончить разговор о том, как распознаются частицы Стандартной модели, рассмотрим последнюю их группу — слабые калибровочные бозоны: два W и один Ζ, переносящие слабое ядерное взаимодействие. Слабые калибровочные бозоны отличаются той особенностью, что, в отличие от фотонов и глюонов, имеют ненулевую массу покоя. Надо сказать, что наличие массы у слабых калибровочных бозонов — частиц, передающих слабое взаимодействие — представляет собой достаточно серьезную фундаментальную загадку. Происхождением своим эти массы — как и массы других элементарных частиц, о которых говорилось в этой главе — обязаны механизму Хиггса, к которому мы перейдем в самом ближайшем будущем.
Из‑за своей тяжести W- и Ζ–бозоны долго не живут; они распадаются. Это значит, что слабые калибровочные бозоны, подобно истинным кваркам и другим тяжелым нестабильным частицам, можно распознать только через наблюдение за частицами, рождающимися в процессе распада. А поскольку любые новые тяжелые частицы тоже, вероятно, окажутся нестабильными, мы попробуем на примере распада слабых калибровочных бозонов показать еще одно интересное свойство распадающихся частиц.
W–бозон взаимодействует с любыми частицами, чувствительными к слабому взаимодействию (то есть со всеми частицами, о которых до сих пор шла речь). Это дает W–бозону множество вариантов распада. Он может распасться на любой заряженный лептон (электрон, мюон или тау–частицу) и соответствующее ему нейтрино. Его распад может также породить пару кварков — верхний и нижний или очарованный и странный, как показано на рис. 44.
РИС. 44. W–бозон может распасться на любой заряженный лептон и соответствующее ему нейтрино, или на верхний и нижний кварки, или на очарованный и странный кварки. На самом деле в кварковом секторе имеется смешивание, так что W–бозон может иногда распадаться в кварки разных поколений
Возможные варианты распада, помимо всего прочего, зависят от массы исходной частицы. Дело в том, что продукты распада частицы в сумме должны давать массу, меньшую, чем масса исходной частицы. Так, хотя W–бозон вполне способен взаимодействовать с истинным и красивым кварками, распасться на них он не может, так как масса истинного кварка больше массы W–бозона [48] Тем не менее взаимодействие между W–бозоном, t–кварком и b–кварком является причиной того, что t–кварк может распасться на b–кварк и W–бозон. — Прим. авт.
.
Рассмотрим распад W–бозона на два кварка, поскольку в этом случае экспериментаторы могут измерить оба продукта распада (в случае лептона и нейтрино это не так, потому что нейтрино не посредственно не обнаруживается). По закону сохранения энергии и импульса суммарная энергия и импульс конечных кварков равны энергии и импульсу распавшейся частицы, то есть W–бозона.
В этот момент, однако, вмешиваются специальная теория относительности Эйнштейна и квантовая механика, и ситуация становится более интересной. Специальная теория относительности говорит нам о том, как соотносятся масса, энергия и импульс. Большинству людей знаком сокращенный вариант формулы Е = mc 2 . Эта формула верна для частиц в состоянии покоя; здесь т интерпретируется как т 0 — неисчезающая масса покоя частицы, изначально ей присущая. Если частица движется, у нее имеется импульс, и на сцене появляется более полная формула: Е 2 –р 2 с 2 = т 0 2 с 2 . По этой формуле [49] Через нее можно также определить релятивистскую массу, которая зависит от импульса и энергии, но следствия будут теми же. — Прим. авт.
экспериментаторы могут вычислить массу частицы даже в том случае, если сама она давно распалась. Для этого достаточно измерить суммарный импульс и энергию продуктов распада и, применив это уравнение, вычислить массу первоначальной частицы.
Причина, по которой в этой истории фигурирует квантовая механика, несколько тоньше. Если наблюдать со стороны, то масса частицы не всегда равняется в точности ее реальной и истинной массе. Частицы способны распадаться, а квантово–механическое уравнение неопределенности говорит нам, что для точного измерения энергии необходимо бесконечное время; это значит, что энергию частицы, имеющей ограниченный срок жизни, вообще невозможно знать точно. Величина возможной ошибки тем больше, чем быстрее распадается частица и чем меньше время ее жизни. Следовательно, в любом конкретном измерении можно получить значение массы, близкое, но не равное ее истинному среднему значению. Только проведя множество измерений, экспериментаторы могут выяснить одновременно массу—наиболее вероятную ее величину, к которой сходится среднее значение — и время жизни, поскольку именно продолжительность существования частицы до распада определяет разброс измеренных масс (рис. 45). Это верно не только для W–бозона, но и для любой другой распадающейся частицы.
Читать дальшеИнтервал:
Закладка: