Карл Циммер - Микрокосм. E. coli и новая наука о жизни
- Название:Микрокосм. E. coli и новая наука о жизни
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2013
- Город:Москва
- ISBN:978-5-91671-269-8, 978-0-30-27686-5;
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Циммер - Микрокосм. E. coli и новая наука о жизни краткое содержание
E. coli —
Интересно, что
— общественный микроб. Автор проводит удивительные и тревожные параллели между жизнью
и нашей собственной жизнью. Он показывает, как этот микроорганизм меняется практически на глазах исследователей, раскрывая перед их изумленным взором миллиарды лет эволюции, закодированные в его геноме.
Издание подготовлено при поддержке Фонда Дмитрия Зимина «Династия»
Династия
Фонд некоммерческих программ «Династия» основан в 2001 г. Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком». Приоритетные направления деятельности Фонда — поддержка фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе — сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект «Библиотека «Династии» — издание современных научно — популярных книг, тщательно отобранных экспертами — учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта.
Микрокосм. E. coli и новая наука о жизни - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Беквит мелькнул крупными заголовками на первых полосах The New York Times и других газет и пропал. Споры об опасностях генной инженерии смолкли. Ученые, не думая об опасности, вернулись к поискам новых способов работы с генами. Те, кто изучал человека, с завистью смотрели на инструменты, при помощи которых Беквит и его товарищи экспериментировали на E. coli.
Для исследования одного — единственного мышиного гена ученому может потребоваться ДНК сотен тысяч мышей. В результате было очень мало известно о том, каким образом генетическая информация в клетках животных транслируется в белки. Еще меньше было известно о самих генах — к примеру, о том, сколько их у человека или какую функцию каждый из них выполняет.
Пол Берг из Стэнфордского университета много лет посвятил изучению того, как E. coli синтезирует молекулы, и в конце 1960–х гг. его всерьез заинтересовал вопрос о том, нельзя ли применить те же методы для исследования клеток животных. В то время ученые изучали новые типы вирусов, навсегда поселившихся в хромосомах животных. Эти вирусы имеют огромное значение для медицины, потому что способны заставить клетки хозяина бесконтрольно размножаться и порождать опухоли. Берг увидел сходство между этими вирусами животных и некоторыми из вирусов, инфицирующих E. coli. В 1950–е гг. ученые выяснили, как можно использовать вирусы бактерии E. coli для переноса генов от одного хозяина к другому. Берг хотел узнать, нельзя ли заставить вирусы животных служить переносчиками генов.
Берг начал экспериментировать с канцерогенным вирусом обезьян SV40. Для начала нужно было придумать, каким образом можно встроить дополнительный ген в вирусную ДНК. Берг решил, что для этого ему придется разрезать кольцевую хромосому SV40 в строго определенном месте. Однако молекулярного ножа, при помощи которого можно было бы осуществить эту операцию, у него не было.
По случайному совпадению именно в тот момент другие ученые обнаружили такой нож. В 1960–е гг. у E. coli были открыты ферменты рестрикции, которые связывались с определенной короткой последовательностью нуклеотидов и разрезали чужеродную ДНК. Среди исследователей, совершивших это открытие, был и Герберт Бойер, микробиолог из Калифорнийского университета в Сан — Франциско. Бойер предоставил Бергу недавно открытый фермент рестрикции, названный EcoRl.
Берг с коллегами сумели при помощи EcoRl расщепить хромосому вируса SV40. К одному из концов ДНК вируса SV40 ученые добавили ДНК бактериофага лямбда, паразитирующего на E. coli. Чтобы сшить два фрагмента ДНК воедино, Берг с коллегами добавил к концу каждого фрагмента некоторое количество нуклеотидов, азотистые основания которых могли образовывать с концом другого фрагмента комплементарные связи. В результате всех этих операций получился искусственный вирусный гибрид. Строго говоря, это был гибрид трех видов, потому что бактериофаг лямбда включил в свой геном и некоторые участки ДНК хозяина — E. coli.
Поскольку у гибрида присутствовали гены фага лямбда, отвечающие за внедрение в клетку E. coli, Берг решил проверить, сможет ли гибрид тоже проникнуть в бактерию. Он попросил одну из своих студенток, Дженет Мерц, разработать план эксперимента. Для Берга и Мерц тот эксперимент начался как попытка получить ответ на еще один интересный вопрос. Но остальные, узнав об их планах, пришли в ужас.
Одним из первых, кто поделился с Бергом своим беспокойством по этому поводу, стал специалист по биоэтике Леон Касс. Когда‑то он, как и Берг, работал с E. coli, но затем разочаровался в науке, увидев, как стремительно расширяются ее достижения и как мало при этом внимания уделяется этической стороне дела. Касс предостерег Берга, сказав, что манипулирование генами может завести человечество в моральный тупик. Если биологи научатся встраивать гены в человеческий зародыш, родители получат возможность заранее выбирать характеристики своих детей. Они не ограничатся модификацией генов, которые, к примеру, ответственны за развитие таких болезней, как серповидноклеточная анемия или другие наследственные генетические заболевания. Они захотят улучшить даже совершенно здоровых детей.
«Достаточно ли мы разумны, чтобы ставить под угрозу равновесие генетического банка?» — задал вопрос Касс.
Берг отмахнулся от этого предупреждения, но, когда сомнения начали высказывать и другие специалисты по вирусам, он призадумался. Мерц объяснила остальным исследователям, как именно они с Бергом собирались создать своеобразную матрешку: SV40 в фаге лямбда, фаг лямбда в E. coli. Один из коллег ответил: «Ну да, а E. coli в человеке».
Некоторые ученые опасались, что если E. coli с вирусом SV40 внутри случайно вырвется из лаборатории Берга, то через какое‑то время она сможет найти себе хозяина — человека. Устроившись там, она начнет размножаться, производя при этом в огромных количествах канцерогенные вирусы. Никто не мог предсказать, как все обернется в подобном случае: может, обойдется без последствий, а может, разразится невиданная эпидемия рака. Перед лицом таких неопределенностей Берг и Мерц приняли решение отказаться от задуманного эксперимента.
«Я не хотела стать человеком, создавшим из‑за собственного упрямства чудовище, которое убьет миллионы людей», — сказала позже Мерц.
В то время лаборатория Берга была единственной в мире, где активно проводились опыты по генной инженерии. В ней пользовались хитроумными, сложными и очень медленными методами. Закрыв эксперимент по созданию химеры, ученые могли быть уверены, что никто не сможет продолжить их исследования. Но прошло совсем немного времени, и генная инженерия стала намного проще технически — и, конечно, еще противоречивее.
Берг и Бойер продолжали изучать механизм, при помощи которого EcoRl разрезает молекулу ДНК. Они выяснили, что фермент оставляет после себя отнюдь не чистый ровный срез; наоборот, на каждом конце одна из нитей ДНК оказывается длиннее другой. Этот свисающий кончик может спонтанно соединиться с другим болтающимся кончиком, также отрезанным при помощи EcoRl. По существу, при разрезании получались так называемые «липкие» концы. И не нужно было ничего дополнительно делать с фрагментами ДНК разных видов, чтобы соединить их: они сами делали все необходимое.
Вскоре Бойер сумел реализовать возможности, которые давали ему «липкие» концы ДНК. Вместо вирусов он выбрал плазмиды — колечки ДНК, которыми бактерии обменивались друг с другом. Вместе со специалистом по плазмидам Стенли Коэном Бойер разрезал две плазмиды при помощи EcoRl. «Липкие» концы молекул соединились, объединив две плазмиды в одно кольцо. Каждая из плазмид несла в себе гены, отвечающие за устойчивость к какому‑то одному антибиотику, и когда Бойер и Коэн ввели получившуюся плазмиду в клетку E. coli, бактерия получила резистентность к обоим лекарствам. После деления этой бактерии оба новых микроорганизма получили по одинаковой плазмиде, созданной методами генной инженерии. Впервые в истории живой микроб стал носителем генов, сознательно соединенных человеком.
Читать дальшеИнтервал:
Закладка: