Виктор Балабанов - Нанотехнологии. Правда и вымысел
- Название:Нанотехнологии. Правда и вымысел
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Балабанов - Нанотехнологии. Правда и вымысел краткое содержание
В книге разрушаются многочисленные мифы и стереотипы, связанные с нанотехнологиями.
Нанотехнологии. Правда и вымысел - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 51. Схема светодиода (чипа) на основе гетероструктур типа InGaN/AlGaN/GaN (индий-галлий-азот/алюминий-галлий-азот/галлий-азот)
Рассмотрим принцип работы и процесс создания светодиодного прибора. Классическая схема изготовления светодиода заключается в следующем. На поверхности сапфирового кристалла (подложке) выращиваются кристаллические слои полупроводникового материала, например на основе гетероструктур типа InGaN/AlGaN/GaN (индий-галлий-азот/алюминий-галлий-азот/галлий-азот), толщиной от 100 нм до 4,5 мкм (рис. 51). Продолжительность эпитаксиального роста светодиодной структуры, способной излучать свет при пропускании через нее электрического тока, составляет около шести часов.
На полученной пластине методами фотолитографической обработки, реактивного ионного травления, вакуумного напыления и др. создаются светоизлучающие кристаллы для изготовления полупроводниковых приборов. При этом на одной пластине могут находиться до 4000 кристаллов, которые разделяются на отдельные кристаллы (чипы) лазерной резкой.
Полученные чипы монтируются на специальные электрические платы, где ультразвуковой сваркой осуществляется соединение контактных площадок кристаллов и электропроводящих элементов печатных плат. Кристаллы заливаются компаундом (затвердевающим составом) для надежной фиксации и защиты от внешнего воздействия.
Для изготовления готового светового прибора разработано два конструкторских решения:
• группу кристаллов монтируют на печатную плату, коммутируют, заливают компаундом, и в результате получается готовый светодиодный модуль;
• несколько дискретных (отдельных) светодиодов устанавливают на общую печатную плату.
Полученный блок светодиодов (матрица) в дальнейшем применяется для создания различной осветительной техники и приборов, в том числе для подводного использования.
Значительный интерес представляют разработки так называемых органических светодиодов (organic light emitting diode, OLED), основанных на различных формах зеленого флуоресцентного белка (GFD). В перспективе GFP могут быть использованы при создании мониторов, телевизоров, различных дисплеев и т. п., совершенно безвредных для окружающей среды и потребляющих ничтожно малое количество энергии.
В данной главе необходимо остановиться на уникальной разработке отечественных ученых и практиков из ракетнокосмической отрасли по созданию на околоземной орбите крупногабаритных солнечных отражателей.
Академик РАН Юрий Павлович Семенов в докладе «Новые российские технологии в ракетно-космической технике последних лет» рассказал о некоторых результатах уникального эксперимента, который не был до конца реализован и, на наш взгляд, может быть успешно решен за счет новых достижений в области нанотехнологий.
Эксперимент заключался в реализации идеи использовать плоские космические отражатели для передачи световой энергии Солнца на поверхность Земли. Идея использования такого отражателя, а также солнечного паруса для межпланетных перелетов была высказана еще в 20-х годах Ф. А. Цандером. Он впервые рассмотрел несколько конструкций этого устройства, наиболее целесообразная из которых была подробно описана в 1924 году в неопубликованном варианте статьи «Перелеты на другие планеты».
Наверное, любой из нас играл в детстве с «солнечным зайчиком», зеркалом направляя отраженный солнечный свет в темные уголки двора. Теоретически было рассчитано, что солнечные отражатели можно эффективно применять и для освещения отдельных участков Земли, если площадь рефлектора будет составлять 5000-10 000 м2 (рис. 52). При планировании эксперимента главной задачей являлось обеспечение минимизации массы отражателя и его автоматического развертывания из транспортного положения, а также последующее позиционирование на заданные участки земной поверхности.
Уже на тот период времени в распоряжении ученых были разработки по изготовлению зеркальных отражателей (рефлекторов) из полимерной металлизированной пленки нанометровой толщины. Устройство должно было развертываться в рабочее положение, а затем сохранять необходимую округлую форму с помощью центробежных сил, возникающих при вращении отражателя вокруг оси, перпендикулярной его плоскости.
В начале 90-х годов прошлого столетия РКК «Энергия» приступила к практической реализации этой идеи, а в феврале 1993 года был проведен первый демонстрационный эксперимент «Знамя-2». После отстыковки грузового космического корабля «Прогресс М-15» от российской орбитальной станции «Мир» на консольной части «Прогресса» успешно развернули двадцатиметровый отражатель из алюминизированной пленки ПЭТФ-ОА толщиной 7 мкм и массой 4,2 кг (рис. 53).
Рис. 52. Подсветка ночной поверхности Земли ««солнечным зайчиком» (эксперимент ««Знамя-2»)
Рис. 53. Грузовой космический корабль ««Прогресс М-15» с солнечным отражателем в ходе автономного полета 4 февраля 1993 года (рисунок с сайта www.vivovoco.rsl.ru )
Формообразование бескаркасного пленочного отражателя, как и рассчитывали, осуществлялось центробежными силами, возникавшими при вращении барабана и принудительном сматывании секторов отражателя с катушек с помощью электромеханических приводов.
Анализ телевизионной и телеметрической информации, переданной в Центр управления полетами с орбитальной станции «Мир», подтвердил правильность принятых технических решений. Отражатель действительно смог осуществить подсветку земной поверхности отраженными солнечными лучами в автоматическом режиме на одном витке вокруг Земли. Эксперимент также подтвердил правильность основных принципов и расчетных методик, послуживших базой для разработки нового направления в создании крупногабаритных бескаркасных пленочных конструкций (солнечных отражателей и солнечных парусов). Казавшаяся фантастической идея направления солнечного света на отдельные участки Земли была реализована российскими учеными и конструкторами.
Через пять лет, 25 октября 1998 года, грузовой корабль «Прогресс М-40» с доработанной экспериментальной установкой «Знамя-2,5» на борту стартовал с космодрома Байконур в Казахстане. Новый отражатель был выполнен с учетом замечаний, поступивших в ходе первого эксперимента и имел диаметр 25 м. Подсветку земной поверхности планировали осуществлять в двух режимах: автоматическом и ручном – на 16 витках вокруг Земли при общей продолжительности эксперимента 24 ч. Диаметр светового пятна на Земле должен была составить 6–8 км, а яркость космического освещения – около 2–5 лунетт (в 2–5 раз выше освещения в полнолуние).
Начальный этап проекта «Знамя-2,5» прошел без замечаний, в строгом соответствии с запланированной программой эксперимента. Корабль был успешно выведен на орбиту и состыкован с орбитальной станцией «Мир», в составе которой находился до февраля 1999 года. Основной этап эксперимента по развертыванию отражателя начался сразу же после отстыковки грузового корабля от станции 4 февраля 1999 года. К сожалению, дальнейший его ход был прекращен из-за несогласованности в работе обеспечивающих систем (ошибки в автоматической программе управления кораблем). Команда на открытие антенны не была блокирована, полотнище отражателя зацепилось за эту открытую антенну и пришло в негодность.
Читать дальшеИнтервал:
Закладка: