Яков Перельман - Занимательный космос. Межпланетные путешествия
- Название:Занимательный космос. Межпланетные путешествия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Яков Перельман - Занимательный космос. Межпланетные путешествия краткое содержание
К. Э. Циолковский
Занимательный космос. Межпланетные путешествия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Рис. 42. Ракетоплан (крылатая ракета)
Рис. 43. Сравнительная схема фейерверочной и современной ракеты на жидком горючем (по М.К. Тихонравову)
«Что касается вопроса о том, через сколько времени может состояться успешная отсылка ракеты на Луну, то я считаю это осуществимым еще для нынешнего поколения: сделанный мною удачный пробный подъем ракеты на небольшую высоту показал мне, как подобная (межпланетная) ракета должна быть устроена для успешного действия. Жидкие водород и кислород, необходимые в качестве горючего для такой ракеты, могут быть использованы тем же путем, как это сделано было мною в этом опыте. Я верю также в осуществимость океанских перелетов с огромной скоростью в разреженном воздухе больших высот. Обыкновенные самолеты неспособны выполнить подобный перелет, так как авиамотор не может работать в разреженном воздухе. Ракета же летит в такой среде еще лучше, чем в более плотной».
Скудность сведений о работах Годдарда объясняется тем, что они ведутся частью по заданиям военного ведомства, вследствие чего результаты их держатся в секрете. Ракета высокого подъема, несомненно, может служить страшным военным оружием. Полковник Ноордунг, автор немецкой книги «Проблема перелетов в мировом пространстве», пишет по этому поводу следующее:
«Дело идет здесь об обстреле крупных мишеней, каковы неприятельские главные города, промышленные районы и т. п. Если подумать о том, что при подобном обстреле заряды в несколько тонн могут быть перенесены ракетами совершенно безопасно через огромные расстояния к целям, расположенным в глубоком тылу; что ни один участок тыла не может быть обеспечен от подобной бомбардировки; что против нее нет никаких средств обороны – то станет ясно, каким могущественным оружием может явиться ракета».
В другом направлении велись в 1928 и 1929 гг. опыты в Западной Европе: автомобильный фабрикант Фриц Опельвместе с инженером-пиротехником Зандеромприспособили ракету в качестве двигателя автомобиля. Построенные по этому принципу (в начале 1928 г.) автомобили имеют в задней части батарею из 1–3 дюжин толстостенных пороховых ракет, зажигаемых последовательно, по две, с помощью электрического запала. Отверстия ракет обращены назад, вследствие чего при их взрыве автомобиль увлекается вперед. Испытание автомобилей этого типа показало, что ракеты способны не только приводить экипаж в движение, но и сообщать ему весьма значительную скорость до 220 км/ч. Скорость эту конструкторы надеялись довести впоследствии до 400 км/ч и более. Запас пороха в ракетах – 100 кг. Через 8 с от начала взрывания автомобиль уже несся со скоростью 100 км/час. Опыт с ракетной дрезиной (на рельсах) показал скорость 254 км/ч, а с ракетными санями (1929 г.) до 400 км/ч.
Рис. 44. Стартовое приспособление на Берлинском ракетодроме
Большой ошибкой, однако, было бы думать, что в ракетном автомобиле, дрезине или санях мы имеем прообраз самодвижущегося сухопутного экипажа будущего. При тех скоростях, которые допустимы в сухопутном транспорте, ракетный двигатель невыгоден – он переводит в полезную механическую работу слишком ничтожную долю энергии потребляемого горючего (около 5 %). Строители ракетного автомобиля сознавали это. «Хотя мы уже сейчас могли бы превзойти все до сих пор достигнутые скорости, – сказал Ф. Опельв речи, произнесенной при первом публичном испытании изобретения, – фирма отдает себе отчет в том, что ракетный агрегат, обещая для сухопутного транспорта небывалые, считавшиеся до сих пор немыслимыми достижения, представляет в нынешнем виде лишь переходную ступень к ракетному аэроплану, а впоследствии – к космическому кораблю. Мы уже теперь в состоянии отослать ракету без пилота в высшие слои атмосферы и убеждены, что в недалеком будущем нам удастся проникнуть и в пустыню мирового пространства».
Рис. 45. Подготовка к пуску жидкостной ракеты (на Берлинском ракетодроме)
Рис. 46. Обратный спуск жидкостной ракеты на парашюте после достижения высшей точки подъема
Эти слова выражают правильный взгляд на дело. Ракетный автомобиль – слишком расточительное изобретение. Будущее ракеты – не на земной поверхности, а в высших слоях атмосферы и за ее пределами – в мировом пространстве. Будущность имеет не ракетный автомобиль, не ракетный велосипед, не ракетные сани, не ракетная лодка, – а ракетный аэроплан (ракетоплан), могущий совершать полет в стратосфере с почти космической скоростью.
Первые шаги в деле создания аэроплана с ракетным двигателем уже сделаны. Совершался полет на планере с пороховыми ракетами (Штамер, 1928), на самолете с дюжиной ракет (Опель, 1929), на ракетном самолете (Эспенлауб, 1930 и Каттанео, 1931). Впрочем, это были не подлинные полеты, а кратковременные взлеты, продолжительностью в 1–2 минуты. Для совершения более длительных полетов нужны такие запасы пороха, каких самолет не в состоянии поднять. Подлинный ракетоплан должен работать на жидком горючем. Отсюда очередная задача – создание ракетного двигателя с жидким горючим.
В эту сторону направлены усилия изобретателей во многих странах, в том числе и в СССР. Я уже говорил об успешном, по-видимому, разрешении этой задачи американским физиком, проф. Годдардом. Не менее плодотворны труды группы немецких инженеров, работающих на «ракетодроме», отведенном им под Берлином. Они построили и испытали ряд последовательно увеличивающихся моделей жидкостной ракеты: «Мирак I» (от слов «минимальная ракета», мирак), «Мирак II», «Мирак III», «Репульсор». Последняя модель совершила свой первый свободный подъем на ракетодроме 14 мая 1931 г., достигнув высоты 60 м; горючим служил бензин (0,3 литра), окислителем – жидкий кислород (1 литр). Дальнейшим улучшением конструкции и увеличением заряда высота подъема доведена была до 4 км.
Достигнув высшей точки подъема, немецкая жидкостная ракета автоматически раскрывает парашют и плавно опускается на Землю совершенно неповрежденной; она может быть вновь заряжена и опять пущена – в отличие от пороховой ракеты, не допускающей многократного использования. На Берлинском ракетодроме произведено было свыше сотни публичных демонстраций подобного рода. Скорость вытекания продуктов горения из сопла достигала 2200 м/с.
В задачу этой книги не входит описание конструктивных подробностей; схемы устройства германских моделей читатель найдет в книгах наших советских инженеров, изобретателей ракетных аппаратов: С.П. Королева «Ракетный полет в стратосферу» и М.К. Тихонравова «Ракетная техника», где подробно рассмотрена техническая сторона дела (см. Приложение 12). Не останавливаясь на трудах других, менее удачливых германских изобретателей (Валье, 1930; Винклер, 1931), перейду к работам в СССР.
Читать дальшеИнтервал:
Закладка: