Ричард Докинз - Расширенный фенотип: Дальнее влияние гена
- Название:Расширенный фенотип: Дальнее влияние гена
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Докинз - Расширенный фенотип: Дальнее влияние гена краткое содержание
«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме “этого”, но “этот” пожалуйста прочтите. Для меня таким трудом является “Расширенный фенотип”». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.
Расширенный фенотип: Дальнее влияние гена - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В соответствии с этой гипотезой, фенотип раковины – есть совместный фенотип, находящийся под влиянием генов как трематоды, так и улитки – подобно тому, как бобровая плотина – совместный фенотип генов нескольких особей бобра. Согласно этой гипотезе, существуют два оптимума толщины раковин: более толстая – оптимум для трематоды, и более тонкая – оптимум для улитки. Наблюдаемая толщина раковины у зараженных улиток будет вероятно находиться где-нибудь между этими двумя оптимумами, так как гены улиток и трематод могут влиять на толщину стенки, и они влияют в противоположных направлениях.
Что касается здоровых улиток, то на первый взгляд может показаться, что их раковины будут иметь толщину, оптимальную для улитки, так как гены трематоды, могущие оказать своё влияние, отсутствуют. Однако всё не так просто. Если во всей популяции зараженность трематодами широко распространена, то в генофонде будет вероятно будут гены, компенсирующие эффект утолщения генами трематод. В результате – неинфицированные улитки вероятно имели бы перекомпенсированные фенотипы; их раковины вероятно были бы тоньше оптимума для улитки. Могу предсказать, что толщины раковин улиток в ареалах, свободных от трематод, должны иметь промежуточные значения между таковыми у инфицированных и неинфицированных улиток в ареалах, от трематод не свободных. Мне неизвестны какие-либо свидетельства, опирающиеся на это предсказание, но было бы интересно на них взглянуть. Обратите внимание – это предсказание не зависит от какого-то специального предположения о «победе» улиток или трематод. Оно предполагает, что гены и улитки, и гены трематоды оказывают некоторое влияние на фенотип улитки. Предсказание будет работать независимо от количественных деталей этого влияния.
Трематоды живут внутри раковины улитки в почти том же смысле, в каком сами улитки живут внутри своих раковин, и в каком личинки ручейника живут внутри своих каменных домиков. Раз мы приняли идею о том, что форма и цвет домика ручейника может являться фенотипической экспрессией его генов, то нетрудно принять идею о том, что форма и цвет улиточной раковины является фенотипической экспрессией генов трематоды внутри улитки. Если бы мы представили себе фантастическую картину, в которой гены трематоды и улитки рассудительно обсуждают с генами ручейника проблемы построения жёсткой внешней защитной стены, то я не уверен, что их беседа содержала бы какие-либо упоминания о том, что трематода – паразит, а улитка и ручейник – нет. Обсуждались бы конкурентные преимущества секреции карбоната кальция, рекомендуемой генами трематоды и улитки, которому противопоставлялся бы сбор камешков, предпочтительный для генов ручейника. Возможно мог упоминаться тот факт, что удобный и экономичный способ – секреция карбоната кальция, предполагает использование улитки. Но подозреваю, что с точки зрения генов концепция паразитизма трактовалась бы как не относящаяся к делу. Все три гена могли бы расценивать себя как паразитов, или если угодно – как оказывающих сопоставимый уровень влияния на их миры с целью собственного выживания. Живые клетки улитки расценивались бы генами и улитки и трематоды как полезные объекты, которыми нужно манипулировать во внешнем мире – точно так же, как расценивались бы камешки на дне ручья генами ручейника.
Обсуждая неорганические раковины улитки, я сохранил преемственность с домиком ручейника и другими неорганическими продуктами поведения из предыдущей главы. Таким образом я следовал моей политике поддержки доверия читателя, нечувствительно расширяя концепцию фенотипа. Но теперь пришло время жёстко схватить живую улитку за рожки. Трематоды рода Leucochloridium поселяются в рожках улиток, и сильно раздувают их. Под кожей улитки паразиты (спороцисты с церкариями внутри) хорошо заметны из-за бросающейся в глаза пульсации. Это повышает вероятность того, что птицы – окончательные хозяева этих трематод, склюют заражённые рожки улитки, приняв их, как предполагает Виклер (1968) за насекомых. Интересно, что трематоды к тому же явно манипулируют поведением улиток. То ли потому что глаза улитки находятся в кончиках её рожек, то ли посредством более косвенного физиологического воздействия, но трематоды изменяют отношение улитки к свету. В норме негативный фототаксис меняется у инфицированных улиток на стремление к свету. Это стремление выводит их на открытые участки, где они с большей вероятностью склёвываются птицами – на пользу трематоде.
Опять же, если это надлежит расценивать как паразитическую адаптацию, а это действительно так широко расценивается (Wickler 1968; Holmes & Bethel 1972), то нам придётся постулировать существование генов в генофонде паразита, которые влияют на поведение хозяев, ибо все дарвиновские адаптации развиваются отбором генов. Такие гены должны быть по определению «генами поведения улитки», и поведение улитки должно расценивать как часть фенотипической экспрессии генов трематоды.
Значит гены в клетках одного организма могут расширять фенотипическое влияние на живое тело другого организма; в нашем случае эффект генов паразита обнаруживается в признаках поведении хозяина. Литература по паразитологии полна интересными примерами, которые теперь обычно интерпретируются как адаптивная манипуляция хозяевами со стороны паразитов (например, Holmes & Bethel 1972; Love 1980). Что и говорить, среди паразитологов не всегда модно делать такие интерпретации явными. Например, важный обзор паразитарной кастрации у ракообразных (Reinhard 1956) напичкан детальной информацией и рассуждениями о точных физиологических способах кастрации хозяев паразитами, но почти лишён обсуждения причин наличия у паразитов такой способности – то ли отбор сформировал её как адаптацию, то ли кастрация оказалась просто случайным побочным продуктом деятельности паразита. Интересным признаком смены научной моды возможно является более современный обзор (Baudoin 1975), энергично рассматривающий функциональное значение паразитарной кастрации с точки зрения особи паразита. Баудоин делает вывод: «Вот главные тезисы этой статьи: 1) паразитарную кастрацию можно рассматривать как адаптацию паразита, и 2) преимущества, даваемые этой адаптацией являются результатом снижения репродуктивных нагрузок хозяина, что в свою очередь влечёт улучшение выживаемости хозяина, усиленный его рост и/или увеличение энергии, доступной паразиту для улучшения его дарвиновской приспособленности». Это конечно та самая линия рассуждений, которой я только что следовал при обсуждении вызываемого паразитом утолщения раковины улитки. Опять же – вера в то, что паразитарная кастрация – адаптация паразита, логически подразумевает, что у паразита должен быть (по крайней мере – должен был быть) «ген изменения физиологии хозяина». Признаки паразитарной кастрации, изменения пола, увеличение размеров, или что-то иное, вполне надлежит расценивать как расширенные фенотипические экспрессии генов паразита.
Читать дальшеИнтервал:
Закладка: