Алексей Фитин - Unified theory of human and animals aging. Bioenergy concept aging as a disease

Тут можно читать онлайн Алексей Фитин - Unified theory of human and animals aging. Bioenergy concept aging as a disease - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Алексей Фитин - Unified theory of human and animals aging. Bioenergy concept aging as a disease краткое содержание

Unified theory of human and animals aging. Bioenergy concept aging as a disease - описание и краткое содержание, автор Алексей Фитин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Aging is caused by the main pathogenic factor initiating this disease – oxygen deficiency in organs and tissues. Hypoxia accelerates the degeneration of the weak link – the sensitive nerve endings of the autonomic nervous system. The sequence of events connected by a network of cause-and-effect relationships and representing the pathogenesis of aging disease is considered. The second etiological factor that determines the pathogenesis of aging disease is local hyperoxia of stem cell niches, which leads to accelerated differentiation of stem cells and, as a result, to age-related depletion of their pools. Within the framework of the Concept, the explanation of known significant facts that characterize this disease, but which have not received a clear explanation within the framework of other hypotheses, is considered. Acquisition of disease status by aging makes it possible not only to actively slow down aging, but also to reverse it.

Unified theory of human and animals aging. Bioenergy concept aging as a disease - читать онлайн бесплатно ознакомительный отрывок

Unified theory of human and animals aging. Bioenergy concept aging as a disease - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Алексей Фитин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Structural pathological changes in cells, tissues and organs act as secondary pathogenic factors, entailing malfunctions of functional elements.

The second category of free energy expenditures includes the costs of operating security systems and overcoming metabolic chaos in the form of diseases, which I wrote about above. The more energy is spent on the operation of security systems and on overcoming metabolic chaos, the less it remains for vital functions and the lower the average life expectancy. One of the results of metabolic chaos, manifested in the form of inflammation that accompanies many diseases, is an increase in body temperature, indicating a decrease in the efficiency of bioenergetic mechanisms.

Spending funds (energy) on conditioning the environment, that is, removing from habitat pathogenic microorganisms, toxic substances and reducing the levels of negative physical (radiation) and mental influences, humanity thereby provides the economy of free energy by organisms, which they spend on combating various pathogenic factors and metabolic chaos, thereby reducing the rate of pathological aging and increasing life expectancy.

The sharp increase in the average life expectancy in the twentieth century was provided by the work of infectious disease specialists, hygienists, parasitologists and epidemiologists, who defeated most of the infections. In the second half of the twentieth century, ecologists, clinical epidemiologists, toxicologists and technologists did it, overcoming the negative consequences of the first technical revolutions associated with chemical and physical pollution of the environment.

Hypoxia, reducing the activity of the main source of free energy – the mitochondrial system of oxidative phosphorylation, leads to a decrease in both phosphate and redox potential of cells. The unique property of hypoxia as the main pathogenic factor causing aging is the presence of numerous enhancers of its action. First, a decrease in oxygen concentration leads to a decrease in the rate of free energy production in the cell, the main mass carriers of which are ATP, NADH, NADPH and gradients of hydrogen, sodium, potassium and chlorine ions on cell membranes.

Cells contain more than 500 NADH- and NADPH-dependent enzymes (dehydrogenases), which, due to the free energy of oxidation of pyridine nucleotides, direct cell metabolism. Also in cells there are more than 200 ATP hydrolases that catalyze reactions that require the supply of free energy for their course. In the plasma membranes of various cells, there are energy-dependent translocases, which, due to the energy of the sodium cation gradient, provide the transport of a large list of metabolites into the cell against their concentration gradients.

Secondly, a decrease in the partial pressure of oxygen in organs and tissues leads to a decrease in the enzymatic activity of a number of oxidases. With a decrease in the activity of even one of the oxidases, important metabolic consequences arise in almost all organs and tissues.

A decrease in the activity of such a huge amount of enzymes under conditions of hypoxia leads to the most catastrophic consequences for cells, causing their death and death of the body.

At the physiological level, with aging, there is also a decrease in the production capacity of carriers of free energy due to a decrease in the supply of oxygen to organs and tissues, due to a decrease in the functions of the respiratory and cardiovascular systems.

The situation is aggravated by the fact that the carriers of free energy and their derivatives (cyclic AMP, cyclic GMP, GTP, CoA, FAD, NAD +) are key regulators of metabolism and cells and the body as a whole.

A decrease in the concentration of ATP and NAD(P)H leads to a decrease in the concentration, including nucleotides – substrates for the synthesis of nucleic acids (RNA and DNA): GTP, CTP, UTP, deoxy-ATP, deoxy-GTP, deoxy-CTP and deoxy-TTP.

There is no more toxic and operatively acting pathogenic factor than oxygen deficiency in the body due to the presence of such a large number of enhancers and distributors of its pathogenic effect on cell metabolism.

The whole history of oxygen life takes place under the sign of the economical consumption of always scarce oxygen, at all levels of the organization.

An important mechanism for this saving is the creation of oxygen reserves, especially in intensively functioning tissues and organs. The central nervous system, which is the most powerful and most intensive consumer of oxygen (per gram of mass per unit of time) as the main energy carrier, uses glucose, a semi-oxidized product containing its own oxygen. Glial cells that perform auxiliary functions contain glycogen, which also allows them to conserve oxygen, which is necessary for the functioning of neurons. I will dwell on other mechanisms for saving oxygen later.

I will list some of the main primary consequences of hypoxia for cells and the body as a whole.

1. Activation of an energy-dependent, regulated process of programmed cell death – apoptosis, which is safe for the surrounding tissues and for the organism as a whole, as a result of external influences. Apoptosis is not self-destruction of a cell, but it killing by external factors, in the extreme case, apoptosis can be considered as forcing cells to commit suicide by external factors: – the main physiological – cortisol (circadian rhythm), which with age increasingly becomes pathological (age-dependent growth basal level of cortisol and distress), and the main pathological one – hypoxia.

There is not enough oxygen for the simultaneous work of all cells of the body, it is necessary to save the “most valuable” ones, getting rid of ineffective cells for the survival of the body under hypoxic conditions, and also get rid of cells that may be restored from stem cells. Cascade mechanisms of the sequential elimination of cell components in a certain order require the expenditure of free energy in the form of ATP hydrolysis (for example, ubiquitin).

1.1. Activation of the production of free oxygen radicals by the respiratory chain of dying mitochondria. Free radicals of oxygen (* OH) and nitrogen (* NO), possessing high values of the oxidative potential, as well as ATP and NAD(P)H are mass carriers of free energy and are involved in the normal energy metabolism of cells. Free oxygen radicals generated by dying mitochondria are products of cell apoptosis, but not vice versa, as is often found in the literature.

It is the oxygen deficiency that leads to a network of events ending in apoptosis: – slowing down of the transport of electrons along the respiratory chain; – a decrease in the electrochemical potential difference of hydrogen ions on the inner mitochondrial membrane; – swelling of mitochondria with disruption of the integrity of the outer mitochondrial membrane; – exit from the intermembrane space into the cytoplasm of cytochrome C, which leads to disconnection from the respiratory chain of cytochrome oxidase and to the termination of direct transfer of electrons to oxygen (disconnection of cytochrome oxidase from the respiratory chain is an elegant evolutionary device that excludes the possibility of senseless and therefore harmful “eating” oxygen that is already deficient under conditions of hypoxia); – activation of the reverse transfer of electrons (against the redox potential of the electron carriers of the respiratory chain) entering the respiratory chain from dehydrogenases of the second conjugation point; – increasing the concentration of the reaction product of one-electron reduction of Coenzyme Q; – chemical reaction of oxygen with the Coenzyme Q radical, leading to an increase in the concentration of free oxygen radicals.

1.2. The main results of the impact of free oxygen radicals generated by dying mitochondria. The most important result of the action of free oxygen radicals is the chemical modification of mitochondrial DNA, which is surrounded on all sides by outgrowths of the inner membrane (cristae), in which the enzymes of the respiratory chain are localized. The number of DNA copies in mitochondria reaches 10, and the number of mitochondrial DNA copies per cell is several tens of thousands due to the large number of mitochondria in it.

The main function of free oxygen radicals generated by the respiratory chain of mitochondria of cells that have entered apoptosis, which is positive for the body, is the covalent modification of mitochondrial DNA and mitochondrial enzymes of its duplication. The meaning of these processes is the inactivation or neutralization of mitochondrial DNA, which is in origin and structure (without introns and without histones) bacterial DNA, capable of integrating into cellular DNA and thereby facilitating cell transformation [20].

This does not mean that the appearance of free oxygen radicals (like many other, especially chemically active metabolites) in the wrong place and/or in unusually high concentrations exceeding the capabilities of antioxidant protection does not harm the cell and the body as a whole. This situation, apparently, is realized under conditions of intense radiation exposure.

The function of free oxygen radicals generated by NADPH oxidase of the plasma membrane of immunocompetent cells is also similar, the activity of which increases when they interact with bacteria and viruses. The meaning of the generation of free oxygen radicals, and in this case, lies in the covalent modification of foreign DNA. To destroy a bacterium or cell means, first of all, to damage its DNA.

The pathogenic function of an excess of antioxidants consumed by humans is to reduce the rate of mitochondrial DNA detoxification by free oxygen radicals, which, apparently, leads to an increase in the likelihood of oncological diseases [10].

1.3. Safety of free oxygen radicals generated by the mitochondria of a dying cell for neighboring cells. Due to the high chemical reactivity of free oxygen radicals and due to the small distances of their free path, neighboring cells with intact mitochondria are probably not susceptible to the pathogenic effects of these radicals.

First, in order to leave the mitochondria of a dying cell and get into a neighboring healthy cell, free radicals need to overcome many membranes with built-in densely packed proteins that contain a large number of potential targets for free radicals (unsaturated bonds in lipids and proteins; strong and numerous reducing agents in the form of natural antioxidants – vitamins, glutathione and thiol groups of proteins; as well as enzymes – catalase, peroxidase and superoxide dismutase, which neutralize radicals.

Secondly, even single free radicals that have reached the mitochondria of a neighboring healthy cell are able to engage in the normal functioning of their respiratory chains due to a chemical reaction with Coenzyme Q, a 50-fold excess of which in relation to other electron carriers (cytochromes, ferredoxins and dehydrogenases) is present in the inner membrane of mitochondria and diffuses freely in the membrane.

2. Activation of the disordered process of cell death – necrosis under conditions of deep or prolonged hypoxia, harmful to the surrounding tissues and to the organism as a whole. Disruption of apoptosis into necrosis is caused by a deficiency of oxygen and, consequently, a deficiency of free energy in the form of ATP and NAD(P)H, which are necessary to bring the energy-dependent process – apoptosis to the logical end.

3. Inflammation and autoimmune diseases. One of the last substrates inaccessible to proteases involved in apoptosis are transmembrane proteins of the plasma membrane. These proteins are present in apoptotic bodies, the end products of apoptosis, which are successfully captured by cells and digested by lysosomal enzymes of cells of the immune system. Interruption of this sequence of events under hypoxic conditions leads to the appearance of transmembrane proteins in the blood and to inflammation. The production of antibodies simultaneously against the external and intracellular epitopes of such proteins is likely to lead to autoimmune diseases accompanied by inflammation.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Фитин читать все книги автора по порядку

Алексей Фитин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Unified theory of human and animals aging. Bioenergy concept aging as a disease отзывы


Отзывы читателей о книге Unified theory of human and animals aging. Bioenergy concept aging as a disease, автор: Алексей Фитин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x