Гарет Уильямс - Двойная спираль. Забытые герои сражения за ДНК

Тут можно читать онлайн Гарет Уильямс - Двойная спираль. Забытые герои сражения за ДНК - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2022. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Гарет Уильямс - Двойная спираль. Забытые герои сражения за ДНК краткое содержание

Двойная спираль. Забытые герои сражения за ДНК - описание и краткое содержание, автор Гарет Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые. Эта книга об одном из величайших триумфов современной науки и людях, разобравшихся в составе и структуре этой загадочной молекулы.
В формате PDF A4 сохранен издательский макет.

Двойная спираль. Забытые герои сражения за ДНК - читать онлайн бесплатно ознакомительный отрывок

Двойная спираль. Забытые герои сражения за ДНК - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Гарет Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К тому времени непостоянный Геккель изменил свою точку зрения и присоединился к сторонникам ядра. Это произошло потому, что ядро вернулось домой и, несмотря на ужасную привычку исчезать как раз тогда, когда становится интересно, начало делиться своими секретами. А новые находки указывали в увлекательном направлении. В 1866 году Геккель написал [42] Haeckel E. Generelle Morphologie der Organismen. Berlin: G. Reimer, 1866, vol. 2, p. 287–8. , что «ядра обеспечивают передачу наследственных характеристик», как если бы это было совершенно очевидно все время.

Потребовалось еще 20 лет, чтобы подкрепить доказательствами сделанную Геккелем констатацию факта. Это удалось сделать благодаря прогрессу в оптике и гистологии – изучении тканей под микроскопом. Прославленное увеличительное стекло Броуна развилось в составные микроскопы, которые мы знаем сегодня, с отдельными линзами в объективе (непосредственно над образцом) и окуляре. В результате получалось гораздо более четкое и яркое изображение, так что микроскоп можно было направить на живые клетки или очень тонкие полоски ткани, которые пропитывали парафином, чтобы сохранить внутреннюю структуру. Полоски были тонкими (стопка из 200 единиц достигала бы всего миллиметра в высоту) и прозрачными, что позволяло подкрашивать элементы клетки синтетическими красителями. Эти гистологические красители преобразили монохромный облик микроскопии. Они вступали в реакции с отдельными компонентами, такими как белки, жиры или нуклеиновые кислоты, и расцвечивали их красками, которые могли бы украсить палитру художника. К первым красителям относились метиловый зеленый, эозин (насыщенно-розовый, названный в честь древнегреческой богини утренней зари) и толуидиновый синий, который обозначает ядро богатым ультрамариновым оттенком. Фридрих Мишер мог бы стать первопроходцем в этой новой области – гистохимии. В 1874 году он обнаружил, что прозрачный раствор нуклеина приобретает красивый голубо-зеленый цвет при добавлении метилового зеленого; но он не испытывал никакого желания «присоединиться к гильдии красильщиков» [43] Miescher F., Arbeiten, letter 1897; i:107–8. и оставил это наблюдение, чтобы его заново открыл кто-нибудь другой.

К счастью, другие ученые были более заинтересованы новыми красителями и их способностью выявлять детали устройства клетки, которые ранее были невидимы. И вскоре из зерновидных внутренностей ядра Роберта Броуна начали появляться странные фигуры – красивые, но сбивающие с толку.

Конфликт лояльности

В состоянии покоя, которое занимает свыше 99,99 % жизненного цикла большинства клеточных типов, ядро мало чем выдает себя под микроскопом. Оно сидит в клетке тихо и бесстрастно, словно игрок в покер; а затем ни с того ни с сего вовлекается в такую запутанную бурную деятельность, что даже самые зоркие микроскописты не могли договориться о том, что произошло. Ядро растворяется, оставляя на своем месте своеобразные меняющие форму элементы. Затем клетка удлиняется и два ядра появляются с противоположных концов. Наконец, вся система разрывается в середине, в результате чего появляются две дочерние клетки, у каждой из которых имеется целенькое ядро, которое выглядит точно так же, как первоначальное.

Деление клетки лежит в основе жизни, здоровья и восстановления организмов. Ткани и органы растут и расширяются, потому что клетки, из которых они состоят, размножаются путем деления надвое. Некоторые типы клеток, такие как определенные нервные клетки (нейроны) мозга, живут свои долгие жизни, не зная переживаний деления, но у большинства клеток более честолюбивые замыслы. Клетки кожи и внутренней оболочки кишечника [44] Spalding K., Bhardwaj R. D., Bucholtz B. A. Retrospective birth dating of cells in humans. Cell 2005; 122:133–43. подвергаются сильному износу, поэтому им приходится чаще регенерировать самих себя, чтобы сохранять эти поверхности в целости. Даже для этих интенсивно обновляющихся тканей деление клетки – редкое событие; например, оно занимает лишь последний час из трехдневного периода жизни клетки эпителия толстой кишки. Клетки делятся более часто в эмбрионе и при восстановлении тканей после повреждения – ярким примером может служить новая лапка, которая вырастает у личинки тритона после неудачной встречи с биологом-экспериментатором.

Благодаря своей благоприятствующей анатомии некоторые виды чрезвычайно поспособствовали изучению деления клетки. Если посмотреть невооруженным глазом, лошадиная острица выглядит как 5-дюймовая невероятно подвижная макаронина; под микроскопом это ответ на мольбу биолога – гермафродит с просвечивающими гонадами, где на одном образце можно проследить развитие икры и спермы. Личинки амфибий, таких как тритоны и саламандры, наделены большими удобными для микроскопистов клетками кожи, жабр и мочевого пузыря. А слюнные железы мух содержат необыкновенно большие хромосомы с таким изысканным рисунком, что мутации можно буквально увидеть.

Первые попытки объяснить деление клетки делались на живых клетках (точнее, на медленно умирающих), без использования гистологических красителей. К середине 1870-х годов различные исследователи сообщили о том, что короткие стержнеобразные структуры – которые Эдуард ван Бенеден назвал bâtonnets [45] Van Beneden. , или «маленькие палочки», – появлялись в потревоженной цитоплазме на месте, где последний раз видели ядро. Но загадки, из чего состояли «маленькие палочки», откуда они появились и что они делали, оставались неразгаданными до тех пор, пока один человек не сел за микроскоп и не посвятил 40 лет тому, чтобы разобраться, что происходило на самом деле.

Держаться за нити

Вальтер Флемминг был одним из немногих по-настоящему симпатичных людей в истории изучения ДНК. Он был любим своими студентами [46] Dröscher A. Flemming, Walther. eLS. Chichester: John Wiley & Sons, March 2015, p. 1–4. Doi: 10.1002/9780470015902.a0002790. за «сердечность и благожелательность», а бедняками города, ставшего ему родным, за то, что отдавал им четверть зарплаты и учил их детей бесплатно.

Когда 33-летний Флемминг занял пост профессора анатомии в Кильском университете в феврале 1876 года, он возвращался к своим корням в северной Германии. После счастливого детства, проведенного в Заксенберге, изучение медицины заставило его вести кочевой образ жизни, переезжая из Геттингена в Росток через Тюбинген (он на пару лет разминулся там с Фридрихом Мишером) и Берлин. Получив докторскую степень в 1868 году, он работал в Праге, где бескомпромиссные националистически настроенные чешские студенты превратили его жизнь в настоящий ад – так что он удалился в захудалый университет имени Кристиана Альбрехта в Киле [47] Paweletz N. Walther Flemming: pioneer of mitosis research. Nature Rev Mol Cell Biol 2001; 2:72–5. , один из самых маленьких в Германии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Гарет Уильямс читать все книги автора по порядку

Гарет Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Двойная спираль. Забытые герои сражения за ДНК отзывы


Отзывы читателей о книге Двойная спираль. Забытые герои сражения за ДНК, автор: Гарет Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x